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Motivation

I Mathematical models provide an important tool for
understanding and controlling the spread of infectious diseases
in human populations.

I Certain human diseases such as the common cold and
gonorrhea follow the Susceptible-Infective-Susceptible (SIS)
pattern.

I When modelling the spread of these diseases in human
populations, it is important to consider the structure of the
populations.

I People spend much of their time in groups such as
workplaces, shopping centers and schools.



Motivation

I An individual’s membership in a particular group is not fixed,
but rather it changes over time.

I This structure determines the two paths for disease to spread
through the population:

I Disease is spread between individuals in the same group by
contact between infected and susceptible individuals.

I Disease is spread from one group to another by the migration
of infected individuals.

I We are primarily interested in determining the conditions
under which the disease becomes endemic and the level of
endemic infection.



The Model

I This type of population structure can be modeled using a
metapopulation network.

I We model the spread of an SIS type epidemic in a
metapopulation network using a continuous time Markov
chain.

I We consider a population of size N where each individual is
located at one of J geographically distinct nodes.

I mj(t) := number of infected individuals at node j at time t.

I nj(t) := number of susceptible individuals at node j at time t.

I (m(t),n(t)) = (m1(t), . . . ,mJ(t), n1(t), . . . , nJ(t))



The Model

Transitions (for movement):

I infected individuals move from node j to node k at rate ηjkmj .

I susceptible individuals move from node j to node k at rate
λjknj .

Transitions (for disease dynamics):

I susceptible individuals are infected at node j at rate β
N mjnj .

I infected individuals recover at node j at rate γmj .



Long Term Behaviour of the Model

I This Markov chain has an absorbing set:

{(0,n) : nj ≥ 0; j = 1, . . . , J; ΣJ
j=1nj = N}.

I Any state in the absorbing set is called a disease free state.

I Since the population size is fixed, the population will
eventually enter a disease free state with probability one.

I Upon entering the absorbing set, the distribution of
susceptible individuals will converge to the stationary
distribution of a closed migration processes.



Objectives

I The time taken to reach a disease free state may be very long,
so that the number of infectives in the population may tend
to a quasi-equilibrium before the population enters a disease
free state.

I I am interested in determining a quasi-equilibrium distribution
of the Markov chain as it describes the behaviour of the
population at an endemic level.

I Previous analyses of the SIS epidemic model for an
unstructured population have used the equilibrium distribution
of an approximating stochastic model to approximate the
quasi-equilibrium.

I Due to the complexity of the model, I will use an
approximating ODE to study the quasi-equilibrium behaviour.



Simulation of the process for J = 2

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
ro

po
rt

io
n 

of
 th

e 
po

pu
la

tio
n 

 r
el

at
iv

e 
to

 to
ta

l p
op

ul
at

io
n

 

 

Node 1 Infected
Node 2 Infected
Node 1 Susceptible
Node 2 Susceptible

Figure: N = 500, β = 4, γ = 1, λ12 = 2 λ21 = 1, η12 = 1, η21 = 3



Simulation of the process for J = 2
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Figure: N = 1000, β = 4, γ = 1, λ12 = 2 λ21 = 1, η12 = 1, η21 = 3



Simulation of the process for J = 2
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Figure: N = 5000, β = 4, γ = 1, λ12 = 2 λ21 = 1, η12 = 1, η21 = 3



ODE Approximation

Let ((uN(t), vN(t)), t ≥ 0) := ((N−1m(t),N−1n(t)), t ≥ 0).

Theorem
Suppose limN→∞(uN(0), vN(0)) = (u0, v0). Then, for each T > 0
and for all ε > 0,

lim
N→∞

P

(
sup
t≤T
|(uN(t), vN(t))− (u(t), v(t))| > ε

)
= 0,

where (u(t), v(t)) is the unique solution of

duj

dt
= −ΣJ

k 6=jηjkuj + βujvj − γuj + ΣJ
k 6=jηkjuk ,

dvj
dt

= −ΣJ
k 6=jλjkvj − βujvj + γuj + ΣJ

k 6=jλkjvk ,

for j = 1, . . . , J, subject to (u(0), v(0)) = (u0, v0).



Definitions and Assumptions

I Λjk :=

{
λkj , j 6= k

−ΣJ
l 6=jλjl , j = k ,

Hjk :=

{
ηkj , j 6= k

−ΣJ
l 6=jηjl , j = k .

I Note that ΛT and HT are Q-matrices for migrating
individuals.

I The matrices Λ and H are irreducible.

I This implies that the J nodes of the network cannot be
separated into two distinct populations such that there is no
migration of susceptible or infected individuals from one
population to the other.

I This assumption is taken to hold throughout our analysis.



Definitions and Assumptions

I Λ1 = 0.

I This assumption implies that for each node, the total rate of
susceptible individuals leaving a node is equal to the total rate
of susceptible individuals entering that.

I H1 = 0.

I This assumption has a similar interpretation as above for the
migration rates of infected individuals.



Existence of the Disease Free Equilibrium (DFE)

Theorem
The ODE has a unique DFE given by (0, v∗) where Λv∗ = 0 and
1Tv∗ = 1.



Existence of an Endemic Equilibrium (EE)

Theorem
Assume Λ1 = 0.

I If β ≤ Jγ, then the ODE has no EE.

I If β > Jγ, then the ODE has a unique EE (u∗, v∗) where
v∗j = γ/β for j = 1, . . . , J and u∗ satisfies Hu∗ = 0 and

1Tu∗ = (1− Jγ/β).



Some Important Questions

I Can an epidemic take off when the population initially has a
small proportion of infected individuals?

I We may address this question by analysing the local stability of
the DFE.

I If the DFE is unstable, then the trajectory of the ODE starting
close to the DFE will be repelled from the DFE. Therefore, an
epidemic can take off.

I If the population reaches the EE, can the disease persist at
the endemic level?

I We may address this question by analysing the local stability of
the EE.

I If the EE is locally asymptotically stable, then the disease can
persist in the population for a long time.



Next Generation Matrix

I Let R0 be the spectral radius of the matrix

diag(βv∗) (γI − H)−1 ,

where v∗j is the proportion of susceptible individuals at node j
at the DFE.

I This matrix is called the next generation matrix.

I Its (j , k)th entry is the expected number of new infections in
node j produced by an infected individual originally introduced
into node k when the population is disease free.



Stability of the DFE

Theorem
Assume Λ is diagonalizable. The DFE equilibrium is locally
asymptotically stable if R0 < 1, but unstable if R0 > 1.

I If Λ1 = 0, then R0 = β/(Jγ).

I So, under the assumption Λ1 = 0, the DFE is
I unstable if β > Jγ and

I locally asymptotically stable if β < Jγ.



Stability of the EE

I Let ρH and ρΛ denote eigenvalues of H and Λ.

Theorem
Assume Λ and H are diagonalizable and Λ1 = H1 = 0. Assume
also that ρH 6= ρΛ − (β − Jγ)/J. If β > Jγ, then the EE is locally
asymptotically stable.

I This result requires a number of assumptions on the migration
rates which are not needed for the EE to exist.



Result for the Two Node System

I Assume Λ1 = 0 and β > 2γ. Then, the unique EE of the
ODE is

(u∗1 , u
∗
2 , v
∗
1 , v

∗
2 ) =

(
ζ1(1− 2γ

β
), ζ2(1− 2γ

β
),
γ

β
,
γ

β

)
,

where ζ1 = η21/(η21 + η12), ζ2 = η12/(η21 + η12)

I This EE is locally asymptotically stable.

I This analysis did not use the assumption H1 = 0 or the
condition concerning the relationship between eigenvalues of
Λ and H.

I A different method of proof may be required to relax these
two assumptions in the J node case.



EE of the ODE when Λ1 6= 0

Figure: J = 2, λ12 = 0.01, λ21 = 0.02, η12 = 2, η21 = 1, γ = 1, β ∈ [1, 4]



EE of the ODE when Λ1 6= 0

Figure: J = 3, λ12 = 0.02, λ21 = 0, λ23 = 0.03, λ32 = 0, λ13 = 0,
λ31 = 0.01, η12 = 1, η21 = 3, η23 = 4, η32 = 1, η13 = 3, η31 = 2, γ = 1,
β ∈ [1, 4]



Conclusions

I We have shown that, if Λ1 = 0, then
I R0 = β/(Jγ).

I If R0 > 1, the DFE is unstable and there exists a unique stable
EE.

I If R0 ≤ 1, no EE exists and the DFE is stable.

I We note that assumptions Λ1 = 0 and H1 = 0, used in
determining the existence of the EE and its stability, are
relatively strong and need to be relaxed to broaden the
applicability of these results.

I Our analysis of the two node case and numerical results
suggest that these assumptions could be dropped, but a
different approach may be needed to obtain these results.



Conclusions

I One approach to controlling the spread of a disease is
suggested by the stability result concerning the DFE.

I If a small number of infected individuals are introduced into a
population with R0 < 1, then the disease should die out
quickly as the DFE is stable in that case.

I Since R0 is given by the spectral radius of the matrix

diag(βv∗) (γI − H)−1 ,

it may be possible to reduce R0 to less than one by altering
the migration rates.
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