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Motivation

Mathematical models provide an important tool for
understanding and controlling the spread of infectious diseases
in human populations.

Certain human diseases such as the common cold and
gonorrhea follow the Susceptible-Infective-Susceptible (SIS)
pattern.

When modelling the spread of these diseases in human
populations, it is important to consider the structure of the
populations.

People spend much of their time in groups such as
workplaces, shopping centers and schools.



Motivation

» An individual's membership in a particular group is not fixed,
but rather it changes over time.

» This structure determines the two paths for disease to spread
through the population:

» Disease is spread between individuals in the same group by
contact between infected and susceptible individuals.

» Disease is spread from one group to another by the migration
of infected individuals.

» We are primarily interested in determining the conditions
under which the disease becomes endemic and the level of
endemic infection.
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The Model

This type of population structure can be modeled using a
metapopulation network.

We model the spread of an SIS type epidemic in a
metapopulation network using a continuous time Markov
chain.

We consider a population of size N where each individual is
located at one of J geographically distinct nodes.

m;(t) := number of infected individuals at node j at time t.

n;(t) := number of susceptible individuals at node j at time t.

(m(t),n(t)) = (m1(2), ..., my(t), m(t), ..., ny(t))



The Model

Transitions (for movement):

» infected individuals move from node j to node k at rate n;m;.

» susceptible individuals move from node j to node k at rate
)\jknj.

Transitions (for disease dynamics):

» susceptible individuals are infected at node j at rate %mjnj.

» infected individuals recover at node j at rate ym;.



Long Term Behaviour of the Model

This Markov chain has an absorbing set:

{(Ovn)nJZO,le,,J,Zjl:an:N}

Any state in the absorbing set is called a disease free state.

Since the population size is fixed, the population will
eventually enter a disease free state with probability one.

Upon entering the absorbing set, the distribution of
susceptible individuals will converge to the stationary
distribution of a closed migration processes.



Objectives

The time taken to reach a disease free state may be very long,
so that the number of infectives in the population may tend
to a quasi-equilibrium before the population enters a disease
free state.

| am interested in determining a quasi-equilibrium distribution
of the Markov chain as it describes the behaviour of the
population at an endemic level.

Previous analyses of the SIS epidemic model for an
unstructured population have used the equilibrium distribution
of an approximating stochastic model to approximate the
quasi-equilibrium.

Due to the complexity of the model, | will use an
approximating ODE to study the quasi-equilibrium behaviour.



Simulation of the process for J = 2
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Simulation of the process for J = 2
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Simulation of the process for J = 2
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ODE Approximation

Let ((un(t),vn(t)),t > 0) := ((N"tm(t), N~In(t)),t > 0).

Theorem
Suppose limy_so0(upn(0), vy(0)) = (u®,v°). Then, for each T >0
and for all e > 0,

N—o0 t<T

lim P (sup [(un(t), vn(t)) — (u(t), v(2)) > 6) =0,

where (u(t),v(t)) is the unique solution of

du;
= Tk B — Y+ Ttk
dvj
E zk;éj jkVJ ﬁuj‘{]+7uj+zk7§j)\kjvk,

for j=1,...,J, subject to (u(0),v(0)) = (u% v°).
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Definitions and Assumptions

/\jk — )\kj7 iFk ij — Nkj> JFk
=S N i =k, =i =k

Note that AT and HT are Q-matrices for migrating
individuals.

The matrices A and H are irreducible.

This implies that the J nodes of the network cannot be
separated into two distinct populations such that there is no
migration of susceptible or infected individuals from one
population to the other.

This assumption is taken to hold throughout our analysis.



Definitions and Assumptions

A1 =0.

This assumption implies that for each node, the total rate of
susceptible individuals leaving a node is equal to the total rate
of susceptible individuals entering that.

H1=0.

This assumption has a similar interpretation as above for the
migration rates of infected individuals.



Existence of the Disease Free Equilibrium (DFE)

Theorem
The ODE has a unique DFE given by (0,v*) where Av* = 0 and
17v =1.



Existence of an Endemic Equilibrium (EE)

Theorem
Assume N1 = 0.

> If B < Jv, then the ODE has no EE.

» If B > Jv, then the ODE has a unique EE (u*,v*) where
v =7/B forj=1,...,J and u* satisfies Hu* = 0 and
17 = (1— Jv/B).



Some Important Questions

» Can an epidemic take off when the population initially has a
small proportion of infected individuals?

» We may address this question by analysing the local stability of
the DFE.

» If the DFE is unstable, then the trajectory of the ODE starting
close to the DFE will be repelled from the DFE. Therefore, an
epidemic can take off.

» If the population reaches the EE, can the disease persist at
the endemic level?

» We may address this question by analysing the local stability of
the EE.

> If the EE is locally asymptotically stable, then the disease can
persist in the population for a long time.



Next Generation Matrix

» Let Ry be the spectral radius of the matrix

diag(Bv*) (v/ — H) ",

*

where v is the proportion of susceptible individuals at node j

at the DFE.
» This matrix is called the next generation matrix.

» lIts (j, k)th entry is the expected number of new infections in
node j produced by an infected individual originally introduced
into node k when the population is disease free.



Stability of the DFE

Theorem
Assume A is diagonalizable. The DFE equilibrium is locally
asymptotically stable if Ry < 1, but unstable if Ry > 1.

» If A1 =0, then Ry = 3/(J7).

» So, under the assumption A1 = 0, the DFE is
» unstable if 8 > Jv and
» locally asymptotically stable if 8 < Jv.



Stability of the EE

» Let p/ and p" denote eigenvalues of H and A.

Theorem

Assume N and H are diagonalizable and A1 = H1 = 0. Assume
also that p' # pN — (B — Jv)/J. If B> Jv, then the EE is locally
asymptotically stable.

» This result requires a number of assumptions on the migration
rates which are not needed for the EE to exist.



Result for the Two Node System

Assume A1 = 0 and 8 > 2. Then, the unique EE of the
ODE is

2y 27y 7
U*aU*7V*)V* :<C11_7<21_7) )
(U1, U3, 1, v3) ( 5 ) G 3 ) 373
where (1 = m1/(m21 + m12), C2 = M2/ (M21 + M12)
This EE is locally asymptotically stable.

This analysis did not use the assumption H1 = 0 or the
condition concerning the relationship between eigenvalues of
A and H.

A different method of proof may be required to relax these
two assumptions in the J node case.



EE of the ODE when A1 #0
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EE of the ODE when A1 #0
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Conclusions

» We have shown that, if A1 =0, then

> Ro=5/(47).
» If Ry > 1, the DFE is unstable and there exists a unique stable
EE.

» If Ry <1, no EE exists and the DFE is stable.

» We note that assumptions A1 =0 and H1 = 0, used in
determining the existence of the EE and its stability, are
relatively strong and need to be relaxed to broaden the
applicability of these results.

» Our analysis of the two node case and numerical results
suggest that these assumptions could be dropped, but a
different approach may be needed to obtain these results.



Conclusions

» One approach to controlling the spread of a disease is
suggested by the stability result concerning the DFE.

» If a small number of infected individuals are introduced into a
population with Ry < 1, then the disease should die out
quickly as the DFE is stable in that case.

» Since Ry is given by the spectral radius of the matrix
diag(Bv*) (v/ — H) ™,

it may be possible to reduce Ry to less than one by altering
the migration rates.
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