Spread of an SIS Epidemic in a Network

Aminath Shausan (Joint work with: Prof. Phil. Pollett and Dr. Ross McVinish)

School of Mathematics and Physics

July 10, 2013

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Motivation

- Mathematical models provide an important tool for understanding and controlling the spread of infectious diseases in human populations.
- Certain human diseases such as the common cold and gonorrhea follow the Susceptible-Infective-Susceptible (SIS) pattern.
- When modelling the spread of these diseases in human populations, it is important to consider the structure of the populations.
- People spend much of their time in groups such as workplaces, shopping centers and schools.

Motivation

- An individual's membership in a particular group is not fixed, but rather it changes over time.
- This structure determines the two paths for disease to spread through the population:
 - Disease is spread between individuals in the same group by contact between infected and susceptible individuals.
 - Disease is spread from one group to another by the migration of infected individuals.
- We are primarily interested in determining the conditions under which the disease becomes endemic and the level of endemic infection.

The Model

- This type of population structure can be modeled using a metapopulation network.
- We model the spread of an SIS type epidemic in a metapopulation network using a continuous time Markov chain.
- We consider a population of size N where each individual is located at one of J geographically distinct nodes.
- $m_j(t) :=$ number of infected individuals at node j at time t.
- $n_j(t) :=$ number of susceptible individuals at node j at time t.

•
$$(\mathbf{m}(t), \mathbf{n}(t)) = (m_1(t), \dots, m_J(t), n_1(t), \dots, n_J(t))$$

The Model

Transitions (for movement):

- infected individuals move from node j to node k at rate $\eta_{jk}m_j$.
- ► susceptible individuals move from node *j* to node *k* at rate $\lambda_{jk} n_j$.

Transitions (for disease dynamics):

- susceptible individuals are infected at node j at rate $\frac{\beta}{N}m_jn_j$.
- infected individuals recover at node j at rate γm_j .

Long Term Behaviour of the Model

This Markov chain has an absorbing set:

$$\{(\mathbf{0},\mathbf{n}): n_j \geq 0; j = 1, \ldots, J; \Sigma_{j=1}^J n_j = N\}.$$

- Any state in the absorbing set is called a disease free state.
- Since the population size is fixed, the population will eventually enter a disease free state with probability one.
- Upon entering the absorbing set, the distribution of susceptible individuals will converge to the stationary distribution of a closed migration processes.

Objectives

- The time taken to reach a disease free state may be very long, so that the number of infectives in the population may tend to a quasi-equilibrium before the population enters a disease free state.
- I am interested in determining a quasi-equilibrium distribution of the Markov chain as it describes the behaviour of the population at an endemic level.
- Previous analyses of the SIS epidemic model for an unstructured population have used the equilibrium distribution of an approximating stochastic model to approximate the quasi-equilibrium.
- Due to the complexity of the model, I will use an approximating ODE to study the quasi-equilibrium behaviour.

Simulation of the process for J = 2

Figure: N = 500, $\beta = 4$, $\gamma = 1$, $\lambda_{12} = 2$ $\lambda_{21} = 1$, $\eta_{12} = 1$, $\eta_{21} = 3$

Simulation of the process for J = 2

Figure: N = 1000, $\beta = 4$, $\gamma = 1$, $\lambda_{12} = 2$, $\lambda_{21} = 1$, $\eta_{12} = 1$, $\eta_{21} = 3$

Simulation of the process for J = 2

Figure: N = 5000, $\beta = 4$, $\gamma = 1$, $\lambda_{12} = 2$, $\lambda_{21} = 1$, $\eta_{12} = 1$, $\eta_{21} = 3$

ODE Approximation

Let $((\mathbf{u}_N(t), \mathbf{v}_N(t)), t \ge 0) := ((N^{-1}\mathbf{m}(t), N^{-1}\mathbf{n}(t)), t \ge 0).$ Theorem

Suppose $\lim_{N\to\infty} (\mathbf{u}_N(0), \mathbf{v}_N(0)) = (\mathbf{u}^0, \mathbf{v}^0)$. Then, for each T > 0 and for all $\epsilon > 0$,

$$\lim_{N\to\infty}\mathbb{P}\left(\sup_{t\leq T}\left|\left(\mathbf{u}_N(t),\mathbf{v}_N(t)\right)-\left(\mathbf{u}(t),\mathbf{v}(t)\right)\right|>\epsilon\right)=0,$$

where $(\mathbf{u}(t), \mathbf{v}(t))$ is the unique solution of

$$\begin{aligned} \frac{du_j}{dt} &= -\Sigma_{k\neq j}^J \eta_{jk} u_j + \beta u_j v_j - \gamma u_j + \Sigma_{k\neq j}^J \eta_{kj} u_k, \\ \frac{dv_j}{dt} &= -\Sigma_{k\neq j}^J \lambda_{jk} v_j - \beta u_j v_j + \gamma u_j + \Sigma_{k\neq j}^J \lambda_{kj} v_k, \end{aligned}$$

for j = 1, ..., J, subject to $(u(0), v(0)) = (u^0, v^0)$.

Definitions and Assumptions

$$\blacktriangleright \quad \Lambda_{jk} := \begin{cases} \lambda_{kj}, & j \neq k \\ -\Sigma_{l\neq j}^J \lambda_{jl}, & j = k, \end{cases} \quad H_{jk} := \begin{cases} \eta_{kj}, & j \neq k \\ -\Sigma_{l\neq j}^J \eta_{jl}, & j = k. \end{cases}$$

- Note that Λ^T and H^T are Q-matrices for migrating individuals.
- The matrices Λ and H are irreducible.
- This implies that the J nodes of the network cannot be separated into two distinct populations such that there is no migration of susceptible or infected individuals from one population to the other.
- > This assumption is taken to hold throughout our analysis.

Definitions and Assumptions

$\blacktriangleright \Lambda \mathbf{1} = \mathbf{0}.$

This assumption implies that for each node, the total rate of susceptible individuals leaving a node is equal to the total rate of susceptible individuals entering that.

 $\blacktriangleright H\mathbf{1} = \mathbf{0}.$

This assumption has a similar interpretation as above for the migration rates of infected individuals.

Existence of the Disease Free Equilibrium (DFE)

Theorem The ODE has a unique DFE given by $(\mathbf{0}, \mathbf{v}^*)$ where $\Lambda \mathbf{v}^* = \mathbf{0}$ and $\mathbf{1}^T \mathbf{v}^* = 1$.

Existence of an Endemic Equilibrium (EE)

Theorem

Assume $\Lambda \mathbf{1} = \mathbf{0}$.

- If $\beta \leq J\gamma$, then the ODE has no EE.
- ► If $\beta > J\gamma$, then the ODE has a unique EE ($\mathbf{u}^*, \mathbf{v}^*$) where $v_j^* = \gamma/\beta$ for j = 1, ..., J and \mathbf{u}^* satisfies $H\mathbf{u}^* = \mathbf{0}$ and $\mathbf{1}^T \mathbf{u}^* = (1 J\gamma/\beta)$.

Some Important Questions

- Can an epidemic take off when the population initially has a small proportion of infected individuals?
 - We may address this question by analysing the local stability of the DFE.
 - If the DFE is unstable, then the trajectory of the ODE starting close to the DFE will be repelled from the DFE. Therefore, an epidemic can take off.
- If the population reaches the EE, can the disease persist at the endemic level?
 - We may address this question by analysing the local stability of the EE.
 - If the EE is locally asymptotically stable, then the disease can persist in the population for a long time.

Next Generation Matrix

Let R₀ be the spectral radius of the matrix

diag
$$(\beta \mathbf{v}^*) (\gamma \mathbf{I} - \mathbf{H})^{-1}$$
,

where v_j^* is the proportion of susceptible individuals at node j at the DFE.

- This matrix is called the next generation matrix.
- Its (j, k)th entry is the expected number of new infections in node j produced by an infected individual originally introduced into node k when the population is disease free.

Stability of the DFE

Theorem

Assume Λ is diagonalizable. The DFE equilibrium is locally asymptotically stable if $R_0 < 1$, but unstable if $R_0 > 1$.

• If
$$\Lambda \mathbf{1} = \mathbf{0}$$
, then $R_0 = \beta/(J\gamma)$.

- \blacktriangleright So, under the assumption $\Lambda {\bf 1} = {\bf 0},$ the DFE is
 - unstable if $\beta > J\gamma$ and
 - locally asymptotically stable if $\beta < J\gamma$.

Stability of the EE

• Let ρ^H and ρ^{Λ} denote eigenvalues of H and Λ .

Theorem

Assume Λ and H are diagonalizable and $\Lambda \mathbf{1} = H\mathbf{1} = \mathbf{0}$. Assume also that $\rho^H \neq \rho^{\Lambda} - (\beta - J\gamma)/J$. If $\beta > J\gamma$, then the EE is locally asymptotically stable.

This result requires a number of assumptions on the migration rates which are not needed for the EE to exist.

Result for the Two Node System

Assume Λ1 = 0 and β > 2γ. Then, the unique EE of the ODE is

$$(u_1^*, u_2^*, v_1^*, v_2^*) = \left(\zeta_1(1 - \frac{2\gamma}{\beta}), \zeta_2(1 - \frac{2\gamma}{\beta}), \frac{\gamma}{\beta}, \frac{\gamma}{\beta}\right),$$

where $\zeta_1 = \eta_{21}/(\eta_{21}+\eta_{12}), \ \zeta_2 = \eta_{12}/(\eta_{21}+\eta_{12})$

- This EE is locally asymptotically stable.
- This analysis did not use the assumption H1 = 0 or the condition concerning the relationship between eigenvalues of Λ and H.
- A different method of proof may be required to relax these two assumptions in the J node case.

EE of the ODE when $\Lambda 1 \neq 0$

Figure: J = 2, $\lambda_{12} = 0.01$, $\lambda_{21} = 0.02$, $\eta_{12} = 2$, $\eta_{21} = 1$, $\gamma = 1$, $\beta \in [1, 4]$

EE of the ODE when $\Lambda 1 \neq 0$

Figure: J = 3, $\lambda_{12} = 0.02$, $\lambda_{21} = 0$, $\lambda_{23} = 0.03$, $\lambda_{32} = 0$, $\lambda_{13} = 0$, $\lambda_{31} = 0.01$, $\eta_{12} = 1$, $\eta_{21} = 3$, $\eta_{23} = 4$, $\eta_{32} = 1$, $\eta_{13} = 3$, $\eta_{31} = 2$, $\gamma = 1$, $\beta \in [1, 4]$

Conclusions

- We have shown that, if $\Lambda \mathbf{1} = \mathbf{0}$, then
 - $R_0 = \beta/(J\gamma)$.
 - ► If R₀ > 1, the DFE is unstable and there exists a unique stable EE.
 - If $R_0 \leq 1$, no EE exists and the DFE is stable.
- ► We note that assumptions A1 = 0 and H1 = 0, used in determining the existence of the EE and its stability, are relatively strong and need to be relaxed to broaden the applicability of these results.
- Our analysis of the two node case and numerical results suggest that these assumptions could be dropped, but a different approach may be needed to obtain these results.

Conclusions

- One approach to controlling the spread of a disease is suggested by the stability result concerning the DFE.
- ► If a small number of infected individuals are introduced into a population with R₀ < 1, then the disease should die out quickly as the DFE is stable in that case.</p>
- ▶ Since *R*⁰ is given by the spectral radius of the matrix

diag
$$(\beta \mathbf{v}^*) (\gamma I - H)^{-1}$$
,

it may be possible to reduce R_0 to less than one by altering the migration rates.

Thank you