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Independence and uncorrelation

For a bivariate random vector (X,Y ) with finite second

moments, we can define Cov(X,Y ) = E[(X − EX)(Y − EY )]

and its joint joint cdf FX,Y (x, y) = P(X ≤ x, Y ≤ y).

• X and Y are uncorrelated if Cov(X,Y ) = 0

• X and Y are indept if FX,Y (x, y) = FX(x)FY (y) for all x

and y

• If X and Y are independent, then they are uncorrelated.

• When does uncorrelation imply independence?
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Independence and uncorrelation (2)

• If X and Y takes two values?

Y
X 0 1

0 p00 p01

1 p10 p11

E(XY ) = p11, EX = p01 + p11 =: p·1 and

EY = p10 + p11 =: p1·, so Cov(X,Y ) = 0 iff p11 = p·1p1· iff X

and Y are indept.
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In general,

Y
X a0 a1

b0 p00 p01

b1 p10 p11

X and Y are indept iff they are uncorrelated.

• One takes two values and the other takes more than two?
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Reformulation

• Given that F is an n-dimensional df and G an m

dimensional df, a coupling of F and G is a random vector

(X1, . . . , Xn;Y1, . . . , Ym) such that (X1, . . . , Xn) ∼ F and

(Y1, . . . , Ym) ∼ G.

• Assume that both F and G have finite second moments,

what are the conditions such that any uncorrelated

coupling must be an independent coupling?
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Rank

We say that F has rank k if its support is k-dimension.

He and X. (1987): if F has rank k and G has rank l, then any

uncorrelated coupling is an independent coupling iff F has at

most k + 1 points and G has at most l + 1 values.
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In the context of processes

Viewing (X1, . . . , Xn;Y1, . . . , Ym) as a process on

{1, 2, . . . , n+m}, the problem becomes

How to specify the distribution of a process from its

marginal distributions plus something else?
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What’s something else?

Example. X = (I1, I2) =: I1δ1 + I2δ2 with I1, I2 two

indicator rv’s and assume we know P(I1 = 0), P(I2 = 0) and

P(I1 + I2 = 0) (abstraction: avoidance function), then

P(I1 = 0, I2 = 0) = P(I1 + I2 = 0),

P(I1 = 0, I2 = 1) = P(I1 = 0)− P(I1 = 0, I2 = 0),

P(I1 = 1, I2 = 0) = P(I2 = 0)− P(I1 = 0, I2 = 0),

P(I1 = 1, I2 = 1) = easy.
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Remark

• Cov(I1, I2) = 0 specifies P(I1 = 1, I2 = 1)

• avoidance function specifies P(I1 = 0, I2 = 0)
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Generally

If I1, . . . , Ik are indicator rv’s, then the distribution of

(I1, I2, . . . , Ik) is uniquely determined by the probabilities of

P(Ii1 + · · ·+ Iil = 0)

for all 1 ≤ l ≤ k and 1 ≤ i1 < i2 < · · · < il ≤ k.

Proof. By math induction on k.
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Why not point processes?

• Γ is a metric space, typically R+, R or Rd

• We define H as the class of all integer-valued locally

finite measures on H equipped with a σ-field

• Ξ is a measurable mapping from a probability space to H
and is called a point process

• A point process Ξ is called simple if, almost surely, Ξ(ω)

takes either 1 point or no points at each location.

• The previous example is a simple point process
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The complete distribution of a PP

[Kallenberg (1983) or Daley and Vere-Jones (1988)] To

specify the complete distribution of a point process Ξ, it is

necessary and sufficient to specify all finite distributions

(Ξ(B1), ...,Ξ(Bk)) for all k ≥ 1 and all disjoint Borel sets B1,

..., Bk.
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Simple point processes

Renyi (1967) and Mönch (1971): the distribution of a simple

point process is determined by the probability of there being

0 points (avoidance function) in each of the Borel sets.
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Example

A simple point process Ξ is a Poisson process on Γ iff for any

Borel B ⊆ Γ, Ξ(B) ∼ Pn.

• Ξ(B) ∼ Pn can be replaced by P(Ξ(B) = 0) = e−EΞ(B).

Remark Lee (1968) and Moran (1967): it’s not sufficient to

specify the Poisson property on intervals.
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An application in extreme value theory

Let η1, η2, . . . , ηn be iid (or weakly dependent with α mixing

or β mixing conditions) and define

Ξn =

n∑
i=1

1ηi≥unδi/n.

If nP(η1 ≥ un)→ c, then Ξn converges in distribution to

Pn(λ) with λ(ds) = cds.

• Using this theorem, with η(i) being the ith smallest order

statistics, we get

P(η(n) ≥ un) ≈ Pn(c){1, 2, ...},

P(η(n−1) ≥ un) ≈ Pn(c){2, 3, ...},

etc.
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Why simple point processes?

Example Let X be a nonnegative integer valued rv (e.g.,

Poisson), Y be an indicator rv. If we know the distributions

of X, Y and X + Y , then we know the distribution of (X,Y ).
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Example (Brown and X. (2002)) If {pij} is a joint

probability mass function (that is an array of non-negative

numbers whose sum is one) on {0, 1, 2, ...}2 with strictly

positive probabilities, then there are infinitely many joint

probability mass functions for random variables (X,Y ) for

which the distributions of X, Y and X + Y coincided with

the corresponding distributions for {pij}.
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Theorem. (Brown and X. (2002)) For any measure λ on Γ,

there is one distribution or infinitely many Poisson processes

with mean measure λ according to whether the number of

atoms of λ is less than or equal to 1 or greater than or equal

to 2.
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General PP

Example [cf Brown and X. (2002), Moran (1967) and

Lee (1968)] Let (Xε, Yε), ε < 1/9, be a random vector with

the following joint distribution:

0 1 2 Xε

0 1/9 1/9 + ε 1/9− ε 1/3

1 1/9− ε 1/9 1/9 + ε 1/3

2 1/9 + ε 1/9− ε 1/9 1/3

Yε 1/3 1/3 1/3

so that the distributions of Xε, Yε and Xε + Yε do not depend

on ε:

[Slide 20]



Values of Xε + Yε 0 1 2 3 4

Probabilities 1/9 2/9 1/3 2/9 1/9

Let U and V be independent random variables uniformly

distributed on [0, 0.5] and (0.5, 1] respectively and (U, V ) be

independent of (Xε, Yε). Define Ξε = XεδU + YεδV , where δz

is the Dirac measure at z. Then, the mean measure of Ξε is

2L(B) with no atoms, where L is the Lebesgue measure. For

every Borel set B ⊂ [0, 1], i ≥ 1, let A1 = {U ∈ B},
A2 = {V ∈ B}, Acj be the complement of Aj , by the total

probability formula,

P(Ξε(B) = i) = P(Xε + Yε = i)P(A1A2) + P(Yε = i)P(Ac1A2)

+P(Xε = i)P(A1A
c
2),
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hence one dimensional distributions are completely

determined by the distributions of Xε, Yε and Xε + Yε, which

don’t depend on ε. However, choose B1 = [0, 0.5],

B2 = (0.5, 1], i, j ≥ 1, we have

P(Ξ(B1) = i,Ξ(B2) = j) = P(Xε = i, Yε = j),

which depends on the joint distribution of (Xε, Yε), therefore,

on ε.
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From simple to weakly orderly

A point process Ξ on Γ is said to be weakly ordinary if Ξ(ω)

takes at most two values at each location.

X. (2004): if there is at most one point x0 on Γ such that

Ξ|Γ\{x0} is weakly orderly, then L(Ξ) is uniquely specified by

its one dimensional distributions of Ξ(B) for all Borel B ⊂ Γ.

The condition is essentially necessary.
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Sequence with strong dependence

It has been shown decades ago that the limit of Ξn defined

above for strongly dependent sequence η1, η2, . . . , ηn will

converge to compound Poisson process if converges.

• Compound Poisson process: Let ξ be a nonnegative

integer-valued random variable, for each point of the Poisson

process X, we replace it with an independent copy of ξ, the

resulting process Ξ is called a compound Poisson process.

• Question: to determine the distribution of Ξ, how many

dimensional distributions are sufficient?

• (G. Last, personal communication) We can introduce marks

and use avoidance function.

• Back to “all finite distributions”
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Example: Let

X = ξ1δx1 + ξ2δx2 + ξ3δx3

with ξ1, ξ2 and ξ3 being {0, 1, 2} valued rv’s. Then the

distribution of X is uniquely specified by two dimensional

distributions of X:

{L(X(A), X(B)) : A,B ⊂ {x1, x2, x3}, A ∩B = ∅}.

Proof. Use generating functions.
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A formula

For a compound Poisson process with mean measure λ and ξ

takes k values, then the number of dimensions needed to

determine the distribution of Ξ is

number of atoms in λ ∨ (k − 1)

Sketch of the proof. Assume the number of atoms in λ is l, we

need at least l dimensions.

Next, we need at least k − 1 dimensions by math induction

and generating functions.
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A generalization

Let Ξ be a point process with mean measure λ (not necessary

compound Poisson). Assume λ has l atoms, and at the

remaining locations, Ξ takes at most k values. Suppose that

of the l atoms, Ξ takes more than k values at l̃ locations,

then the distribution of Ξ is specified by

l̃ ∨ (k − 1)

dimensional distributions.
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Thank you for your time!
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