Point processes characterized by their one dimensional distributions

Aihua Xia

Department of Mathematics and Statistics

The University of Melbourne, VIC 3010

8 July 2013

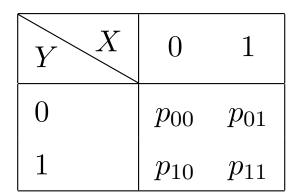
Independence and uncorrelation

For a bivariate random vector (X, Y) with finite second moments, we can define $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)]$ and its joint joint cdf $F_{X,Y}(x, y) = \mathbb{P}(X \leq x, Y \leq y)$.

- X and Y are uncorrelated if Cov(X, Y) = 0
- X and Y are indept if $F_{X,Y}(x,y) = F_X(x)F_Y(y)$ for all x and y
- If X and Y are independent, then they are uncorrelated.
- When does uncorrelation imply independence?

Independence and uncorrelation (2)

• If X and Y takes two values?



 $\mathbb{E}(XY) = p_{11}, \mathbb{E}X = p_{01} + p_{11} =: p_{\cdot 1} \text{ and}$ $\mathbb{E}Y = p_{10} + p_{11} =: p_{1\cdot}, \text{ so } \operatorname{Cov}(X, Y) = 0 \text{ iff } p_{11} = p_{\cdot 1}p_{1\cdot} \text{ iff } X$ and Y are indept.

In general, Y a_0 a_1 b_0 p_{00} p_{01} b_1 p_{10} p_{11}

X and Y are indept iff they are uncorrelated.

• One takes two values and the other takes more than two?

Reformulation

- Given that F is an n-dimensional df and G an m dimensional df, a coupling of F and G is a random vector $(X_1, \ldots, X_n; Y_1, \ldots, Y_m)$ such that $(X_1, \ldots, X_n) \sim F$ and $(Y_1, \ldots, Y_m) \sim G$.
- Assume that both F and G have finite second moments, what are the conditions such that any uncorrelated coupling must be an independent coupling?

Rank

We say that F has rank k if its support is k-dimension.

He and X. (1987): if F has rank k and G has rank l, then any uncorrelated coupling is an independent coupling iff F has at most k + 1 points and G has at most l + 1 values.

In the context of processes

Viewing $(X_1, \ldots, X_n; Y_1, \ldots, Y_m)$ as a process on $\{1, 2, \ldots, n+m\}$, the problem becomes

How to specify the distribution of a process from its marginal distributions plus something else?

What's something else?

Example. $X = (I_1, I_2) =: I_1\delta_1 + I_2\delta_2$ with I_1, I_2 two indicator rv's and assume we know $\mathbb{P}(I_1 = 0), \mathbb{P}(I_2 = 0)$ and $\mathbb{P}(I_1 + I_2 = 0)$ (abstraction: *avoidance function*), then

$$\begin{aligned} \mathbb{P}(I_1 = 0, I_2 = 0) &= \mathbb{P}(I_1 + I_2 = 0), \\ \mathbb{P}(I_1 = 0, I_2 = 1) &= \mathbb{P}(I_1 = 0) - \mathbb{P}(I_1 = 0, I_2 = 0), \\ \mathbb{P}(I_1 = 1, I_2 = 0) &= \mathbb{P}(I_2 = 0) - \mathbb{P}(I_1 = 0, I_2 = 0), \\ \mathbb{P}(I_1 = 1, I_2 = 1) &= \text{easy.} \end{aligned}$$

Remark

- $Cov(I_1, I_2) = 0$ specifies $\mathbb{P}(I_1 = 1, I_2 = 1)$
- avoidance function specifies $\mathbb{P}(I_1 = 0, I_2 = 0)$

Generally

If I_1, \ldots, I_k are indicator rv's, then the distribution of (I_1, I_2, \ldots, I_k) is uniquely determined by the probabilities of

$$\mathbb{P}(I_{i_1} + \dots + I_{i_l} = 0)$$

for all $1 \leq l \leq k$ and $1 \leq i_1 < i_2 < \cdots < i_l \leq k$.

Proof. By math induction on k.

Why not point processes?

- Γ is a metric space, typically \mathbb{R}_+ , \mathbb{R} or \mathbb{R}^d
- We define \mathcal{H} as the class of all integer-valued locally finite measures on \mathcal{H} equipped with a σ -field
- Ξ is a measurable mapping from a probability space to \mathcal{H} and is called a *point process*
- A point process Ξ is called *simple* if, almost surely, Ξ(ω) takes either 1 point or no points at each location.
- The previous example is a simple point process

The complete distribution of a PP [Kallenberg (1983) or Daley and Vere-Jones (1988)] To specify the complete distribution of a point process Ξ , it is necessary and sufficient to specify all finite distributions $(\Xi(B_1), ..., \Xi(B_k))$ for all $k \ge 1$ and all disjoint Borel sets B_1 , ..., B_k .

Simple point processes

Renyi (1967) and Mönch (1971): the distribution of a simple point process is determined by the probability of there being 0 points (avoidance function) in each of the Borel sets.

Example

A simple point process Ξ is a Poisson process on Γ iff for any Borel $B \subseteq \Gamma$, $\Xi(B) \sim Pn$.

• $\Xi(B) \sim \text{Pn can be replaced by } \mathbb{P}(\Xi(B) = 0) = e^{-\mathbb{E}\Xi(B)}.$

Remark Lee (1968) and Moran (1967): it's not sufficient to specify the Poisson property on *intervals*.

An application in extreme value theory

Let $\eta_1, \eta_2, \ldots, \eta_n$ be iid (or weakly dependent with α mixing or β mixing conditions) and define

$$\Xi_n = \sum_{i=1}^n \mathbf{1}_{\eta_i \ge u_n} \delta_{i/n}.$$

If $n\mathbb{P}(\eta_1 \ge u_n) \to c$, then Ξ_n converges in distribution to $\operatorname{Pn}(\lambda)$ with $\lambda(ds) = cds$.

• Using this theorem, with $\eta_{(i)}$ being the *i*th smallest order statistics, we get

$$\mathbb{P}(\eta_{(n)} \ge u_n) \approx \operatorname{Pn}(c)\{1, 2, \dots\},$$
$$\mathbb{P}(\eta_{(n-1)} \ge u_n) \approx \operatorname{Pn}(c)\{2, 3, \dots\},$$

etc.

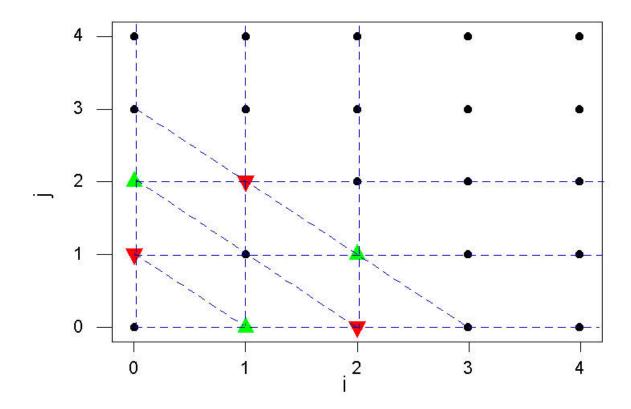
[Slide 15]

Why simple point processes?

Example Let X be a nonnegative integer valued rv (e.g., Poisson), Y be an indicator rv. If we know the distributions of X, Y and X + Y, then we know the distribution of (X, Y).

Example (Brown and X. (2002)) If $\{p_{ij}\}$ is a joint probability mass function (that is an array of non-negative numbers whose sum is one) on $\{0, 1, 2, ...\}^2$ with strictly positive probabilities, then there are infinitely many joint probability mass functions for random variables (X, Y) for which the distributions of X, Y and X + Y coincided with the corresponding distributions for $\{p_{ij}\}$.

Labelling of points in the plane



Theorem. (Brown and X. (2002)) For any measure λ on Γ , there is one distribution or infinitely many Poisson processes with mean measure λ according to whether the number of atoms of λ is less than or equal to 1 or greater than or equal to 2.

General PP

Example [cf Brown and X. (2002), Moran (1967) and Lee (1968)] Let $(X_{\epsilon}, Y_{\epsilon}), \epsilon < 1/9$, be a random vector with the following joint distribution:

012
$$X_{\epsilon}$$
0 $1/9$ $1/9 + \epsilon$ $1/9 - \epsilon$ $1/3$ 1 $1/9 - \epsilon$ $1/9$ $1/9 + \epsilon$ $1/3$ 2 $1/9 + \epsilon$ $1/9 - \epsilon$ $1/9$ $1/3$ Y_{ϵ} $1/3$ $1/3$ $1/3$

so that the distributions of X_{ϵ} , Y_{ϵ} and $X_{\epsilon} + Y_{\epsilon}$ do not depend on ϵ :

Values of $X_{\epsilon} + Y_{\epsilon}$	0	1	2	3	4
Probabilities	1/9	2/9	1/3	2/9	1/9

Let U and V be independent random variables uniformly distributed on [0, 0.5] and (0.5, 1] respectively and (U, V) be independent of $(X_{\epsilon}, Y_{\epsilon})$. Define $\Xi_{\epsilon} = X_{\epsilon}\delta_U + Y_{\epsilon}\delta_V$, where δ_z is the Dirac measure at z. Then, the mean measure of Ξ_{ϵ} is $2\mathbf{L}(B)$ with no atoms, where \mathbf{L} is the Lebesgue measure. For every Borel set $B \subset [0, 1], i \geq 1$, let $A_1 = \{U \in B\},$ $A_2 = \{V \in B\}, A_j^c$ be the complement of A_j , by the total probability formula,

$$\mathbb{P}(\Xi_{\epsilon}(B) = i) = \mathbb{P}(X_{\epsilon} + Y_{\epsilon} = i)\mathbb{P}(A_1A_2) + \mathbb{P}(Y_{\epsilon} = i)\mathbb{P}(A_1^cA_2) + \mathbb{P}(X_{\epsilon} = i)\mathbb{P}(A_1A_2^c),$$

hence one dimensional distributions are completely determined by the distributions of X_{ϵ} , Y_{ϵ} and $X_{\epsilon} + Y_{\epsilon}$, which don't depend on ϵ . However, choose $B_1 = [0, 0.5]$, $B_2 = (0.5, 1], i, j \ge 1$, we have

$$\mathbb{P}(\Xi(B_1) = i, \Xi(B_2) = j) = \mathbb{P}(X_{\epsilon} = i, Y_{\epsilon} = j),$$

which depends on the joint distribution of $(X_{\epsilon}, Y_{\epsilon})$, therefore, on ϵ .

From simple to weakly orderly

A point process Ξ on Γ is said to be *weakly ordinary* if $\Xi(\omega)$ takes at most two values at each location.

X. (2004): if there is at most one point x_0 on Γ such that $\Xi|_{\Gamma\setminus\{x_0\}}$ is weakly orderly, then $\mathcal{L}(\Xi)$ is uniquely specified by its one dimensional distributions of $\Xi(B)$ for all Borel $B \subset \Gamma$. The condition is essentially necessary.

Sequence with strong dependence

It has been shown decades ago that the limit of Ξ_n defined above for strongly dependent sequence $\eta_1, \eta_2, \ldots, \eta_n$ will converge to compound Poisson process if converges.

• Compound Poisson process: Let ξ be a nonnegative integer-valued random variable, for each point of the Poisson process X, we replace it with an independent copy of ξ , the resulting process Ξ is called a *compound Poisson process*.

• Question: to determine the distribution of Ξ , how many dimensional distributions are sufficient?

• (G. Last, personal communication) We can introduce marks and use avoidance function.

• Back to "all finite distributions"

Example: Let

$$X = \xi_1 \delta_{x_1} + \xi_2 \delta_{x_2} + \xi_3 \delta_{x_3}$$

with ξ_1 , ξ_2 and ξ_3 being $\{0, 1, 2\}$ valued rv's. Then the distribution of X is uniquely specified by two dimensional distributions of X:

 $\{\mathcal{L}(X(A), X(B)): A, B \subset \{x_1, x_2, x_3\}, A \cap B = \emptyset\}.$

Proof. Use generating functions. \blacksquare

A formula

For a compound Poisson process with mean measure λ and ξ takes k values, then the number of dimensions needed to determine the distribution of Ξ is

number of atoms in $\lambda \lor (k-1)$

Sketch of the proof. Assume the number of atoms in λ is l, we need at least l dimensions.

Next, we need at least k-1 dimensions by math induction and generating functions. \blacksquare

A generalization

Let Ξ be a point process with mean measure λ (not necessary compound Poisson). Assume λ has l atoms, and at the remaining locations, Ξ takes at most k values. Suppose that of the l atoms, Ξ takes more than k values at \tilde{l} locations, then the distribution of Ξ is specified by

$$\tilde{l} \vee (k-1)$$

dimensional distributions.

Thank you for your time!