Point processes characterized by their one dimensional distributions

Aihua Xia
Department of Mathematics and Statistics
The University of Melbourne, VIC 3010

$$
8 \text { July } 2013
$$

Independence and uncorrelation

For a bivariate random vector (X, Y) with finite second moments, we can define $\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)]$ and its joint joint cdf $F_{X, Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y)$.

- X and Y are uncorrelated if $\operatorname{Cov}(X, Y)=0$
- X and Y are indept if $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all x and y
- If X and Y are independent, then they are uncorrelated.
- When does uncorrelation imply independence?

Independence and uncorrelation (2)

- If X and Y takes two values?

Y	X	0	1
0		p_{00}	p_{01}
1		p_{10}	p_{11}

$\mathbb{E}(X Y)=p_{11}, \mathbb{E} X=p_{01}+p_{11}=: p_{\cdot 1}$ and
$\mathbb{E} Y=p_{10}+p_{11}=: p_{1}$., so $\operatorname{Cov}(X, Y)=0$ iff $p_{11}=p_{\text {. }} p_{1}$. iff X and Y are indept.

In general,

Y	X	a_{0}	a_{1}
b_{0}		p_{00}	p_{01}
b_{1}		p_{10}	p_{11}

X and Y are indept iff they are uncorrelated.

- One takes two values and the other takes more than two?

Reformulation

- Given that F is an n-dimensional df and G an m dimensional df, a coupling of F and G is a random vector $\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right)$ such that $\left(X_{1}, \ldots, X_{n}\right) \sim F$ and $\left(Y_{1}, \ldots, Y_{m}\right) \sim G$.
- Assume that both F and G have finite second moments, what are the conditions such that any uncorrelated coupling must be an independent coupling?

Rank

We say that F has rank k if its support is k-dimension.
He and X. (1987): if F has rank k and G has rank l, then any uncorrelated coupling is an independent coupling iff F has at most $k+1$ points and G has at most $l+1$ values.

In the context of processes

Viewing ($X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}$) as a process on
$\{1,2, \ldots, n+m\}$, the problem becomes
How to specify the distribution of a process from its marginal distributions plus something else?

What's something else?

Example. $X=\left(I_{1}, I_{2}\right)=: I_{1} \delta_{1}+I_{2} \delta_{2}$ with I_{1}, I_{2} two indicator rv's and assume we know $\mathbb{P}\left(I_{1}=0\right), \mathbb{P}\left(I_{2}=0\right)$ and $\mathbb{P}\left(I_{1}+I_{2}=0\right)$ (abstraction: avoidance function), then

$$
\begin{aligned}
& \mathbb{P}\left(I_{1}=0, I_{2}=0\right)=\mathbb{P}\left(I_{1}+I_{2}=0\right) \\
& \mathbb{P}\left(I_{1}=0, I_{2}=1\right)=\mathbb{P}\left(I_{1}=0\right)-\mathbb{P}\left(I_{1}=0, I_{2}=0\right) \\
& \mathbb{P}\left(I_{1}=1, I_{2}=0\right)=\mathbb{P}\left(I_{2}=0\right)-\mathbb{P}\left(I_{1}=0, I_{2}=0\right), \\
& \mathbb{P}\left(I_{1}=1, I_{2}=1\right)=\text { easy. }
\end{aligned}
$$

Remark

- $\operatorname{Cov}\left(I_{1}, I_{2}\right)=0$ specifies $\mathbb{P}\left(I_{1}=1, I_{2}=1\right)$
- avoidance function specifies $\mathbb{P}\left(I_{1}=0, I_{2}=0\right)$

Generally

If I_{1}, \ldots, I_{k} are indicator rv's, then the distribution of
$\left(I_{1}, I_{2}, \ldots, I_{k}\right)$ is uniquely determined by the probabilities of

$$
\mathbb{P}\left(I_{i_{1}}+\cdots+I_{i_{l}}=0\right)
$$

for all $1 \leq l \leq k$ and $1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq k$.
Proof. By math induction on k.

Why not point processes?

- Γ is a metric space, typically $\mathbb{R}_{+}, \mathbb{R}^{\text {or }} \mathbb{R}^{d}$
- We define \mathcal{H} as the class of all integer-valued locally finite measures on \mathcal{H} equipped with a σ-field
- Ξ is a measurable mapping from a probability space to \mathcal{H} and is called a point process
- A point process Ξ is called simple if, almost surely, $\Xi(\omega)$ takes either 1 point or no points at each location.
- The previous example is a simple point process

The complete distribution of a PP

[Kallenberg (1983) or Daley and Vere-Jones (1988)] To specify the complete distribution of a point process Ξ, it is necessary and sufficient to specify all finite distributions $\left(\Xi\left(B_{1}\right), \ldots, \Xi\left(B_{k}\right)\right)$ for all $k \geq 1$ and all disjoint Borel sets B_{1}, ..., B_{k}.

Simple point processes

Renyi (1967) and Mönch (1971): the distribution of a simple point process is determined by the probability of there being 0 points (avoidance function) in each of the Borel sets.

Example

A simple point process Ξ is a Poisson process on Γ iff for any Borel $B \subseteq \Gamma, \Xi(B) \sim$ Pn.

- $\Xi(B) \sim$ Pn can be replaced by $\mathbb{P}(\Xi(B)=0)=e^{-\mathbb{E} \Xi(B)}$.

Remark Lee (1968) and Moran (1967): it's not sufficient to specify the Poisson property on intervals.

An application in extreme value theory

Let $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ be iid (or weakly dependent with α mixing or β mixing conditions) and define

$$
\Xi_{n}=\sum_{i=1}^{n} \mathbf{1}_{\eta_{i} \geq u_{n}} \delta_{i / n}
$$

If $n \mathbb{P}\left(\eta_{1} \geq u_{n}\right) \rightarrow c$, then Ξ_{n} converges in distribution to
$\operatorname{Pn}(\lambda)$ with $\lambda(d s)=c d s$.

- Using this theorem, with $\eta_{(i)}$ being the i th smallest order statistics, we get

$$
\begin{gathered}
\mathbb{P}\left(\eta_{(n)} \geq u_{n}\right) \approx \operatorname{Pn}(c)\{1,2, \ldots\} \\
\mathbb{P}\left(\eta_{(n-1)} \geq u_{n}\right) \approx \operatorname{Pn}(c)\{2,3, \ldots\}
\end{gathered}
$$

etc.

Why simple point processes?

Example Let X be a nonnegative integer valued rv (e.g., Poisson), Y be an indicator rv. If we know the distributions of X, Y and $X+Y$, then we know the distribution of (X, Y).

Example (Brown and X. (2002)) If $\left\{p_{i j}\right\}$ is a joint probability mass function (that is an array of non-negative numbers whose sum is one) on $\{0,1,2, \ldots\}^{2}$ with strictly positive probabilities, then there are infinitely many joint probability mass functions for random variables (X, Y) for which the distributions of X, Y and $X+Y$ coincided with the corresponding distributions for $\left\{p_{i j}\right\}$.

Labelling of points in the plane

Theorem. (Brown and X. (2002)) For any measure λ on Γ, there is one distribution or infinitely many Poisson processes with mean measure λ according to whether the number of atoms of λ is less than or equal to 1 or greater than or equal to 2 .

General PP

Example [cf Brown and X. (2002), Moran (1967) and
Lee (1968)] Let $\left(X_{\epsilon}, Y_{\epsilon}\right), \epsilon<1 / 9$, be a random vector with the following joint distribution:

	0	1	2	X_{ϵ}
0	$1 / 9$	$1 / 9+\epsilon$	$1 / 9-\epsilon$	$1 / 3$
1	$1 / 9-\epsilon$	$1 / 9$	$1 / 9+\epsilon$	$1 / 3$
2	$1 / 9+\epsilon$	$1 / 9-\epsilon$	$1 / 9$	$1 / 3$
Y_{ϵ}	$1 / 3$	$1 / 3$	$1 / 3$	

so that the distributions of $X_{\epsilon}, Y_{\epsilon}$ and $X_{\epsilon}+Y_{\epsilon}$ do not depend on ϵ :

Values of $X_{\epsilon}+Y_{\epsilon}$	0	1	2	3	4
Probabilities	$1 / 9$	$2 / 9$	$1 / 3$	$2 / 9$	$1 / 9$

Let U and V be independent random variables uniformly distributed on $[0,0.5]$ and $(0.5,1]$ respectively and (U, V) be independent of $\left(X_{\epsilon}, Y_{\epsilon}\right)$. Define $\Xi_{\epsilon}=X_{\epsilon} \delta_{U}+Y_{\epsilon} \delta_{V}$, where δ_{z} is the Dirac measure at z. Then, the mean measure of Ξ_{ϵ} is $2 \mathbf{L}(B)$ with no atoms, where \mathbf{L} is the Lebesgue measure. For every Borel set $B \subset[0,1], i \geq 1$, let $A_{1}=\{U \in B\}$, $A_{2}=\{V \in B\}, A_{j}^{c}$ be the complement of A_{j}, by the total probability formula,

$$
\begin{aligned}
\mathbb{P}\left(\Xi_{\epsilon}(B)=i\right)= & \mathbb{P}\left(X_{\epsilon}+Y_{\epsilon}=i\right) \mathbb{P}\left(A_{1} A_{2}\right)+\mathbb{P}\left(Y_{\epsilon}=i\right) \mathbb{P}\left(A_{1}^{c} A_{2}\right) \\
& +\mathbb{P}\left(X_{\epsilon}=i\right) \mathbb{P}\left(A_{1} A_{2}^{c}\right),
\end{aligned}
$$

hence one dimensional distributions are completely determined by the distributions of $X_{\epsilon}, Y_{\epsilon}$ and $X_{\epsilon}+Y_{\epsilon}$, which don't depend on ϵ. However, choose $B_{1}=[0,0.5]$, $B_{2}=(0.5,1], i, j \geq 1$, we have

$$
\mathbb{P}\left(\Xi\left(B_{1}\right)=i, \Xi\left(B_{2}\right)=j\right)=\mathbb{P}\left(X_{\epsilon}=i, Y_{\epsilon}=j\right),
$$

which depends on the joint distribution of $\left(X_{\epsilon}, Y_{\epsilon}\right)$, therefore, on ϵ.

From simple to weakly orderly

A point process Ξ on Γ is said to be weakly ordinary if $\Xi(\omega)$ takes at most two values at each location.
X. (2004): if there is at most one point x_{0} on Γ such that $\left.\Xi\right|_{\Gamma \backslash\left\{x_{0}\right\}}$ is weakly orderly, then $\mathcal{L}(\Xi)$ is uniquely specified by its one dimensional distributions of $\Xi(B)$ for all Borel $B \subset \Gamma$. The condition is essentially necessary.

Sequence with strong dependence

It has been shown decades ago that the limit of Ξ_{n} defined above for strongly dependent sequence $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ will converge to compound Poisson process if converges.

- Compound Poisson process: Let ξ be a nonnegative integer-valued random variable, for each point of the Poisson process X, we replace it with an independent copy of ξ, the resulting process Ξ is called a compound Poisson process.
- Question: to determine the distribution of Ξ, how many dimensional distributions are sufficient?
- (G. Last, personal communication) We can introduce marks and use avoidance function.
- Back to "all finite distributions"

Example: Let

$$
X=\xi_{1} \delta_{x_{1}}+\xi_{2} \delta_{x_{2}}+\xi_{3} \delta_{x_{3}}
$$

with ξ_{1}, ξ_{2} and ξ_{3} being $\{0,1,2\}$ valued rv's. Then the distribution of X is uniquely specified by two dimensional distributions of X :

$$
\left\{\mathcal{L}(X(A), X(B)): A, B \subset\left\{x_{1}, x_{2}, x_{3}\right\}, A \cap B=\emptyset\right\} .
$$

Proof. Use generating functions.

A formula

For a compound Poisson process with mean measure λ and ξ takes k values, then the number of dimensions needed to determine the distribution of Ξ is

$$
\text { number of atoms in } \lambda \vee(k-1)
$$

Sketch of the proof. Assume the number of atoms in λ is l, we need at least l dimensions.

Next, we need at least $k-1$ dimensions by math induction and generating functions.

A generalization

Let Ξ be a point process with mean measure λ (not necessary compound Poisson). Assume λ has l atoms, and at the remaining locations, Ξ takes at most k values. Suppose that of the l atoms, Ξ takes more than k values at \tilde{l} locations, then the distribution of Ξ is specified by

$$
\tilde{l} \vee(k-1)
$$

dimensional distributions.

Thank you for your time!

