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Which route/mode of transport to take?

Individual choice (selfish routing) vs. social optimum

User equilibrium vs. system optimum

Probabilistic routing vs. state-dependent routing.



User equilibrium



Wardrop or user equilibrium

The journey times on all the routes actually used are equal, and
less than those which would be experienced by a single vehicle
on any unused route.

Wardrop, J.G. (1952)

Each user has an infinitesimal effect on the system.



Parallel queues

Network with collection R of N routes from A to B.

Probabilistic routing – user optimal/equilibrium policies

pr = probability of taking route r, with pr ≥ 0,
∑
r pr = 1.

p = (p1, p2, . . . , pN )

Wr(p) = expected transit time via route r ∈ R.

At a user equilibrium, pEQ, there exists c such that

Wr(p
EQ) = c if pEQr > 0

≥ c if pEQr = 0.



State dependent routing – user optimal/equilibrium policies

A decision policy D is a partition of state space, S, into sets Dr, r ∈ R
such that if system is in state n ∈ Dr when a user arrives, then they take
route r.

For a policy D ∈ D and n ∈ S , zDr (n) = expected time to reach the desti-
nation for a general user, if system is in state n immediately prior to their
arrival, and they choose to take route r.

A policy D ∈ D is a user optimal policy or user equilibrium if for each
n ∈ S

n ∈ Dr =⇒ zDr (n) ≤ zDs (n) for all s 6= r, s ∈ R.



Downs-Thomson network



Downs-Thomson network

λ−→

Q1: 1 server, µ1

Q2: ∞ server, µ2
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Two Poisson arrival streams – dedicated users to queue 2 at rate λ2,
– general users at rate λ.

General users choose route – either probabilistic or state-dependent routing.

Q1 single server queue (·/M/1), exponential service times, mean 1/µ1.
Q2 batch service∞ server queue, service times with mean 1/µ2.
Downs(62), Thomson(77), Calvert(97), Afimeimounga,Solomon,Z(05,10)



• Single server queue – private transportation (e.g. cars).

− delay increases as load increases

• Batch service queue – public transportation (e.g. shuttle bus).

− delay decreases as load increases

− frequency of service increases as load increases

• This version of model first proposed by Calvert (1997) as queueing
network version of transportation model that gives rise to the Downs
Thomson paradox.

• Paradox is that delays for all users can increase when capacity of pri-
vate transportation (roading) is increased. First observed by Downs
(1962) and Thomson (1977).

• Afimeimounga, Solomon, Z (2005, 2010)



Downs-Thomson network –

probabilistic routing



λ−→

Q1: 1 server, µ1

Q2: ∞ server, µ2
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Q1 single server queue (·/M/1). Expected delay W1 = 1
µ1−λp

Q2 batch service∞ server queue. Expected delayW2 = 1
µ2

+ N−1
2(λ2+λ(1−p))

Both W1 and W2 are increasing in p.
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λ = 1, λ2 = .1, µ2 = 1, N = 3

W = pEQW1 + (1− pEQ)W2 ————————
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Consequences of individual choice

• Network performance may be poorer than expected

• Adding capacity may lead to worse performance



Downs-Thomson network –

state dependent routing



State dependent policies

X1(t) = number of customers in queue 1
(including customer in service)

X2(t) = number of customers waiting for service in queue 2
(not including those in service)

State space S = Z+ × {0, 1, 2, . . . , N − 1}.

Process XD operating under decision policy D has transition rates:-

n −→


n− e1 at rate µ1I{n1>0}

n+ e1 at rate λI{n∈D1}

(n1, (n2 + 1)mod N) at rate λ2 + λI{n∈D2}

where IA = 1 if A occurs, and IA = 0 otherwise.

A policy D ∈ D is a user optimal policy or user equilibrium if

n ∈ D1 ⇐⇒ zD1 (n) < zD2 (n) for all n ∈ S.
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Unique user optimal policy for

N = 10, λ = 1.5, λ2 = 0.5, µ1 = 2, µ2 = 1.

A policy D ∈ D is monotone if D satisfies

(A) n ∈ D2 ⇒ n+ e1 ∈ D2 for all n ∈ S and

(B) n ∈ D2 ⇒ n+ e2 ∈ D2 for all n ∈ S



Properties

• A user optimal policy exists and is unique (no randomization needed).

• The user optimal policy is monotone.

• The user optimal policy is monotone in the parameters λ, λ2, µ1,
µ2 in the following sense. Let X(1) and X(2) be two processes,
with common batch size N and user optimal policies D∗(1), D∗(2)
respectively. If λ(1) ≥ λ(2), µ(1)

1 ≤ µ
(2)
1 , λ(1)2 ≥ λ

(2)
2 and µ(1)

2 ≥
µ
(2)
2 , then D∗1(1) ⊂ D∗1(2).

• Proof uses a coupling argument.

• As part of the proof show monotonicity of zD2 (n) in λ, λ2, µ1, µ2;
and in the decision policy.

• Afimeimounga, Solomon, Z (2010), Calvert (1997), Ho (2003), Alt-
man and Shimkin (1998), Ben-Shahar, Orda and Shimkin (2000),
Brooms (2005), Hassin and Haviv (2003).



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8
10

µ1

W

Expected transit times under user optimal policy for
state-dependent routing (———–), and probabilistic routing (−−−−−−−)

λ = 1, λ2 = 0.1, µ2 = 1, N = 3 for 0 ≤ µ1 ≤ 3.
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Variations



Two batch-service queues
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Chen, Holmes, Z(2011)



Other variations

Processor-sharing queues

• Iterative procedure may converge to periodic orbit

• User equilibrium doesn’t always possess monotonicity properties

• Randomization needed

Braess’s paradox

• State dependent routing mitigates worst effects here as well
Cohen, Kelly (1990), Calvert, Solomon, Z (1997)



Some final comments

• Do user equilibria exist more generally under state dependent rout-
ing, and if yes, when are they unique?

• How to overcome poor performance at user equilibria?

• Does more information lead to shorter delays in general?
Effects of partial information

• Add monetary and other costs to the problem, as well as delays

• Convergence issues – effect of delayed information.

• Differing information and/or policies for different customer classes

Argument for investment in public transport, using public transport
....



• Afimeimounga, H., Solomon, W. and Ziedins, I. (2005) The Downs-Thomson
paradox: Existence, uniqueness and stability of user equilibria. Queueing
Systems 49, 321-334.

• Afimeimounga, H., Solomon, W. and Ziedins, I. (2010) User equilibria for
a parallel queueing system with state dependent routing. Queueing Systems
66, 169-193.

• Altman, E. and Wynter, L.(2004) Equilibrium games and pricing in trans-
portation and telecommunication networks. Networks and Spatial Eco-
nomics 4, 7–21.

• Altman, E. and Shimkin, N. (1998) Individual equilibrium and learning in
processor sharing systems. Operations Research 46, 776–784.

• Bell, C.E. and Stidham, S., Jr. (1983) Individual versus social optimization
in the allocation of customers to alternative servers. Management Science
29, 831–839.

• Ben-Shahar, I., Orda, A. and Shimkin, N. (2000) Dynamic service sharing
with heterogeneous preferences. Queueing Systems 35, 1572–9443.

• Brooms, A.C. (2005) On the Nash equilibria for the FCFS queueing system
with load-increasing service rate. Adv. Appl. Prob. 37, 461–481.

• Calvert, B. (1997) The Downs-Thomson effect in a Markov process. Prob-
ability in the Engineering and Information Sciences 11, 327–340.



• Calvert, B., Solomon, W. and Ziedins, I. (1997) Braess’s paradox in a
queueing network with state-dependent routing. Journal of Applied Proba-
bility 34, 134–154.

• Cohen, J.E. and Kelly, F.P. (1990) A paradox of congestion in a queueing
network. Journal of Applied Probability 27, 730–734.

• Downs, A. (1962) The law of peak-hour expressway congestion. Traffic
Quarterly 16, 393-409.

• Hassin, R. and Haviv, M. (2003) To Queue or not to Queue: Equilibrium
Behavior in Queueing Systems. Kluwer.

• Ho, B. (2003) Existence, Uniqueness and Monotonicity of the State-Dependent
User Optimal Policy for a Simple Markov Transport Network. MSc Thesis.
The University of Auckland.

• Naor, P. (1969) The regulation of queue size by levying tolls. Econometrica
37, 15 – 24.

• Parlaktürk, A.K. and Kumar, S. (2004) Self-interested routing in queueing
networks. Management Science 50, 949–966.

• Roughgarden, T. and Tardos, E. (2002) How bad is selfish routing? Journal
of the ACM 49, 236–259.

• Wardrop, J.G. (1952) Some theoretical aspects of road traffic research. Pro-
ceedings, Institution of Civil Engineers, II 1, 325–378.


	3mm Self-optimising state-dependent routing in parallel queues
	
	
	
	Which route/mode of transport to take?
	User equilibrium
	Wardrop or user equilibrium
	Parallel queues
	
	Downs-Thomson network
	Downs-Thomson network
	Downs-Thomson network –[5mm] probabilistic routing
	
	
	
	
	
	
	
	
	
	
	
	
	
	Consequences of individual choice
	Downs-Thomson network –[5mm] state dependent routing
	State dependent policies
	
	Properties 
	
	
	Variations
	Two batch-service queues
	Other variations
	Some final comments
	

