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Question 1

ũ (t) =
∑
n

u (nT )K
(
t− nT
T

)
, K (0) = 1, K (n) = 0 ∀n ∈ Z\ {0}

We want linear interpolation i.e. let p ∈ [0, 1] be the linear proportion between inputs u (ntT )
and u (nt+1T ) with nt =

⌊
t
T

⌋

ũ (t) = pu (ntT ) + (1− p)u ((nt + 1)T )

Consider

ntT ≤ t ≤ (nt + 1)T
0 ≤ t− ntT ≤ T
0 ≤ t−ntT

T ≤ 1

∣∣∣∣∣∣∣
ntT ≤ t ≤ (nt + 1)T
−T ≤ t− (nt + 1)T ≤ 0
−1 ≤ t−(nt+1)T

T ≤ 0

Clearly

p = 1− t− ntT
T

Thus

K

(
x = t− nT

T

)
=


1− x 0 ≤ x ≤ 1
1 + x −1 ≤ x ≤ 0
0 otherwise

=
{

1− |x| |x| ≤ 1
0 otherwise

Example

u (x) =


2 x = 0
1 x = 0.5
3 x = 1
0 otherwise

, T = 0.5

Let t = 0.7

ũ (0.7) = K

(0.7− 0 ∗ 0.5
0.5

)
u (0) +K

(0.7− 1 ∗ 0.5
0.5

)
u (0.5) +K

(0.7− 2 ∗ 0.5
0.5

)
u (1) + . . .

= K (1.4)u (0) +K (0.4)u (0.5) +K (−0.6)u (1) + 0
= 0 ∗ u (0) + 0.6 ∗ u (0.5) + 0.4 ∗ u (1)
= 0.6 + 0.4 ∗ 3
= 1.8
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Question 2

C (x) = A (x)B (x) =
2n−2∑
j=0

cjx
j

A (x)B (x) =
n−1∑
j=0

ajx
j
n−1∑
j=0

bjx
j

=
(
a0 + a1x

1 + · · ·+ an−1x
n−1

) (
b0 + b1x

1 + · · ·+ bn−1x
n−1

)
Let ai, bi = 0 ∀i > n− 1 and collect terms up to largest term: (n− 1) + (n− 1) = 2n− 2

x0 a0b0

x1 a0b1 + a1b0

x2 a0b2 + a1b1 + a2b0

...

xn−1 a0bn−1 + a1bn−2 + · · ·+ an−2b1 + an−1b0 =
∑n−1
k=0 akbj−k

...

x2n−2 a0b2n−2 + · · ·+ an−1bn−1 + · · ·+ a2n−2b0 =
∑2n−2
k=0 akbj−k

Clearly

xj :
j∑

k=0
akbj−k

Question 3

D (g ∗ h) = Dg ∗ h = g ∗Dh

Discrete time (shift)

Recall g ∗ h =
∑∞
k−∞ g (k)h (n− k) , D (g) (n) = g (n− 1)

D (g ∗ h) (n) = (g ∗ h) (n− 1)

=
∞∑

k=−∞
g (k)h ((n− 1)− k)

=
∞∑

k=−∞
g (k)D (h) (n− k)

= g ∗D (h)

By relabeling variables we have

D (g ∗ h) (n) =
∞∑

k=−∞
g (k)h (n− 1− k)

=
∞∑

j=−∞
g (j − 1)h (n− 1− (j − 1))

=
∞∑

j=−∞
D (g) (j)h (n− j)

= D (g) ∗ h
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Continuous time (differentiation)

Recall g ∗ h =
´∞
−∞ g (τ)h (t− τ) dτ, D (g) (t) = d

dt (g (t))

d

dt
(g ∗ h) = d

dt

(ˆ ∞
−∞

g (τ)h (t− τ) dτ
)

=
ˆ ∞
−∞

d

dt
(g (τ)h (t− τ)) dτ

=
ˆ ∞
−∞

g (τ) d
dt

(h) (t− τ) dτ

= g ∗D (h)

Similar to the discrete case, changing variables, or via communitive property

d

dt
(g ∗ h) = d

dt
(h ∗ g)

= h ∗D (g)
= D (g) ∗ h

Question 4

Let f (t) = 1 (t) 1(1− t)

f∗2 (t) =


1 t = 1
2− t 1 < t < 2
4− 2t t = 2
t 0 ≤ t < 1

, f∗3 (t) =



1
2 t = 2
t2

2 0 < t < 1
−t2 + 3t− 3

2 1 < t < 2
−1

2(t− 2)t t = 1
1
2(t− 3)2 2 < t < 3

f∗4 (t) =



1
6 t = 1 ∨ t = 3
2
3 t = 2
t3

6 0 < t < 1
− t3

2 + 2t2 − 2t+ 2
3 1 < t < 2

−1
6(t− 4)3 3 < t < 4

t3

2 − 4t2 + 10t− 22
3 2 < t < 3

Let f2 (t) = e−t1 (t)

f∗22 (t) = e−tt1(t), f∗32 (t) = 1
2e
−tt21(t), f∗43 (t) = 1

6e
−tt31(t)
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Since f (t) and f2 (t) are probability distributions (Uniform and Exponential respectfully), and
convolution is addition of distributions it is clear that the CLT follows from the limit of convo-
lutions, which can be seen visibily in the above plots.

Question 5

Recall from defnition of limit

lim
t→∞
|f (t)| = L ⇔ ∀ε > 0 ∃T s.t. t > T ⇒ ||f (t)| − L| < ε

Assuming σ, M > 0 exists such that the following holds as t→∞, i.e. ∀ t > T

|f (t)| < Meσt∣∣∣f (t) e−σt
∣∣∣ < M∣∣∣f (t) e−(σ−α)t
∣∣∣ < Me−αt

Choosing α to make ε = Me−αt > 0 arbitrary, then there exists a σ̃ such that∣∣∣f (t) e−σ̃t
∣∣∣− 0 < ε

Which by the above definition is

lim
t→∞

∣∣∣f (t) e−σ̃t
∣∣∣ = 0

Question 6

Consider P,Q polynomial functions and repetitively applying l’hopitals

lim
t→∞

P (t)
Q (t)e

−σt = lim
t→∞

1
Me−σt

= 0, M ∈ R

Thus any rational function is of exponential order
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Question 7

Consider the rational polynomial function f (t) = a(t)
b(t) with a (t) having lower degree than b (t).

Clearly for large t we have a(t)
b(t) < 1 and

lim
t→∞
|f (t)| = 0

lim
t→∞

∣∣∣f (t) e−0t
∣∣∣ = 0

Thus σc = 0.

Question 8

Optionally skipped

Question 9

f̂ (s) = L
(
eαt
)

=
ˆ ∞

0
e−steαt dt

=
[ 1
α− s

e(α−s)t
]∞

0

= 1
s− α

With Re (s) > Re (α)

Question 10

Find laplace transform of f (t) = e−at cos (bt)

f̂ (s) =
ˆ ∞

0
e−ste−at cos (bt) dt

ˆ
e−(s+a)t cos (bt) dt = e−(s+a)t cos (bt)

− (s+ a) + b

s+ a

ˆ
e−(s+a)t sin (bt) dt+ C

= e−(s+a)t cos (bt)
− (s+ a) + b

s+ a

e−(s+a)t sin (bt)
− (s+ a)

− b2

(s+ a)2

ˆ
e−(s+a)t cos (bt) dt+ C(

1 + b2

(s+ a)2

)ˆ
e−(s+a)t cos (bt) dt = e−(s+a)t ((s+ a) cos (bt) + b sin (bt))

− (s+ a)2 + C

ˆ
e−(s+a)t cos (bt) dt = −e

−(s+a)t ((s+ a) cos (bt) + b sin (bt))
(s+ a)2 + b2

+ C

ˆ ∞
0

e−ste−at cos (bt) dt =
[
−e
−(s+a)t ((s+ a) cos (bt) + b sin (bt))

(s+ a)2 + b2

]∞
0

= s+ a

(s+ a)2 + b2

Where b ∈ R
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Question 11

ẍ+ 6x = cos
(
t

2

)
, x (0) = 0, ẋ (0) = 0

Taking laplace transform gives

s2Y − sx (0)− ẋ (0) + 6Y = s

s2 + 1
4

Y = s(
s2 + 1

4

)
(s2 + 6)

= 4
23

s

s2 +
(

1
2

)2 −
4
23

s

s2 +
(√

6
)2

Inverse laplace transform gives

x (t) = 4
23

(
cos t2 − cos

√
6t
)

Question 12

Prove L (f1 ∗ f2) = f̂1 · f̂2

L (f1 ∗ f2) =
ˆ ∞

0
e−st
ˆ t

−∞
f1 (τ) f2 (t− τ) dτ dt

=
ˆ ∞

0

ˆ t

−∞
f1 (τ) e−stf2 (t− τ) dτ dt

Let u = t− τ and change order of integration

=
ˆ ∞

0

ˆ ∞
0

f1 (τ) e−s(u+τ)f2 (u) du dτ

=
ˆ ∞

0
e−sτf1 (τ) dτ

ˆ ∞
0

e−suf2 (u) du

= f̂1 · f̂2

Question 13

Long division for s4+2s3+s+2
s2+1

s2 + 2s− 1
s2 + 1

√
s4 + 2s3 + s+ 2

s4 + s2

2s3 − s2 + s+ 2
2s3 + 2s

−s2 − s+ 2
−s2 − 1
−s+ 3

Thus we have

f̂ (s) = s2 + 2s− 1 + 3− s
s2 + 1
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Question 14

A11
s+ 1 + A12

(s+ 1)2 + A21
s− 2 = s− 1

(s+ 1)2 (s− 2)
A11 (s+ 1) (s− 2) +A12 (s− 2) +A21 (s+ 1)2 = s− 1

A11
(
s2 − s− 2

)
+A12 (s− 2) +A21

(
s2 + 2s+ 1

)
= s− 1

s2 A11 +A21 = 0 ⇒ A11 = −A21

s −A11 +A12 + 2A21 = 1

1 −2A11 − 2A12 +A21 = −1

Subtracting and substituting above equations gives

A11 = −1
9 , A12 = 2

3 , A21 = 1
9

−1
9

s+ 1 +
2
3

(s+ 1)2 +
1
9

s− 2 = s− 1
(s+ 1)2 (s− 2)

Question 15

Partial fractions for

As+B

s2 + 2s+ 5 + C

s+ 1 = s+ 3
(s2 + 2s+ 5) (s+ 1)

(As+B) (s+ 1) + C
(
s2 + 2s+ 5

)
= s+ 3

s2 A+ C = 0 ⇒ A = −C

s
A+B + 2C = 1

B + C = 1

1 B + 5C = 3

C = 1
2 , B = 1

2 , A = −1
2

1
2 −

1
2s

s2 + 2s+ 5 +
1
2

s+ 1 = s+ 3
(s2 + 2s+ 5) (s+ 1)

Question 16

Find Fourier of f (t) = sin t
t .

As a guess we first consider the inverse of the function f̂ (ω) =
{

1 −L ≤ ω ≤ L
0 otherwise

7



f (t) = 1
2π

ˆ ∞
−∞

f̂ (ω) eiωt dω

= 1
2π

ˆ L

−L
eiωt dω

= 1
2π

[
−ieiωt

t

]L
−L

= i

2π

(
−eitL

t
+ e−itL

t

)

= i

2π

(− cos (Lt)− i sin (Lt) + cos (−Lt) + i sin (−Lt)
t

)
= i

2π

(−2i sin (Lt)
t

)
= sin (Lt)

πt

Thus our Fourier transform must be scaled and have L = 1 such that

f̂ (ω) =
{
π −1 ≤ ω ≤ 1
0 otherwise

Question 17

Bode and Nyquist plot for
H (s) = 1

s2 + s+ 2
Bode (Magnitude / Frequency)

Nyquist
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Question 18

Prove that

α1δ + α2δ = (α1 + α2) δ

That is:
ˆ ∞
−∞

(α1δ + α2δ)φ (t) dt = α1φ (0) + α2φ (0)

= (α1 + α2)φ (0)

=
ˆ ∞
−∞

(α1 + α2) δφ (t) dt

Question 19

Fixing τ and let t ∈ R, show that

f (t) δ (t− τ) = f (τ) δ (t− τ)

We have:

ˆ ∞
−∞

f (t) δ (t− τ)φ (t) dt =
ˆ ∞
−∞

f (u+ τ) δ (u)φ (u+ τ) du

= f (τ)φ (τ)

=
ˆ ∞
−∞

f (τ) δ (u)φ (u+ τ) du

=
ˆ ∞
−∞

f (τ) δ (t− τ)φ (t) dt

Thus

f (t) δ (t− τ) = f (τ) δ (t− τ)

Question 20

From
´∞
−∞ 1 (t)φ (t) dt =

´∞
0 φ (t) dt show definition of 1 (t). Consider 1 (t) to be an arbitrary

function

ˆ ∞
−∞

1 (t)φ (t) dt =
´ 0
−∞ 1 (t)φ (t) dt+

´∞
0 1 (t)φ (t) dt =

ˆ ∞
0

φ (t) dt

since
´ 0
−∞ 1 (t)φ (t) dt = 0 for arbitrary φ (t) we must have 1 (t) = 0∀t < 0

since
´∞

0 1 (t)φ (t) dt =
´∞

0 φ (t) dt for arbitrary φ (t) we must have 1 (t) = 1∀t ≥ 0

thus

1 (t) =
{

0 t < 0
1 t ≥ 0
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Question 21

Show 1′ (t− θ) = δ (t− θ), i.e. show
´∞
−∞ 1′ (t− θ)φ (t) dt =

´∞
−∞ δ (t− θ)φ (t) dt

ˆ ∞
−∞

1′ (t− θ)φ (t) dt =
ˆ ∞
−∞

1′ (u)φ (u+ θ) du

= −
ˆ ∞
−∞

1 (u)φ′ (u+ θ) du

= −
ˆ ∞

0
φ′ (u+ θ) du

= − (φ (∞)− φ (θ))
= φ (θ)

=
ˆ ∞

0
δ (u)φ (u+ θ) du

=
ˆ ∞
−∞

δ (t− θ)φ (t) dt

Thus 1′ (t− θ) = δ (t− θ)

Question 22

Show linear property for N inputs, that is: O
(∑N

i=1 αiui (t)
)

=
∑N
i=1 αiyi (t)

When N = 2 this holds due to standard linear property O (α1u1 (t) + α2u2 (t)) = α1y1 (t) +
α2y2 (t), assume holds for k and let y (t) = O (u (t)) = O

(∑k
i=1 αiui (t)

)
=
∑k
i=1 αiyi (t), we

show that this holds for k + 1

O
(
k+1∑
i=1

αiui (t)
)

= O
(

k∑
i=1

αiui (t) + αk+1uk+1 (t)
)

= O (u (t) + αk+1uk+1 (t))
= y (t) + αk+1yk+1 (t)

=
k+1∑
i=1

αiyi (t)

Thus by induction this holds for arbitrarty N .

Question 23

Determine properties for

y (n) = 1
N +M + 1

N∑
m=−M

(u (n+m))α+β cos(n)

memoryless M = 0, i.e. uses no historical < n values

causal N = 0, that is uses no future > n values

linear α = 1, β = 0, since y (n) = 1
N+M+1

∑N
m=−M u (n+m) is linear from previous exer-

cise

time-invariant β = 0, removing the β cos (n) periodic effect - which dramatically changes the
result based on time
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Question 24

Show LTI memoryless ⇔ impulse has the form h (t) = Kδ (t)

⇐assuming impulse has the form h (t) = Kδ (t)

y (t) =
ˆ ∞
−∞

u (τ)Kδ (t− τ) dτ

= Ku (t)

thus output does not rely on historical time values, aka memoryless

⇒ assuming LTI memoryless
By looking at the convolution

y (t) =
ˆ ∞
−∞

u (τ)h (t− τ) dτ

=
ˆ ∞
−∞

h (τ)u (t− τ) dτ

we see that due to memoryless, we must have h (τ) = 0 for τ > t (else u (τ) uses history) and
we must have h (τ) = 0 for τ < t (else u (t− τ) uses history)
Thus the convolution requires that the impluse is non-zero only at t. Thus our generalized linear
impulse must be defined as a scaled δ function, that is:

h (t) = Kδ (t)

Question 25

Show LTI system is causal ⇔ h (t) = 0 for all t < 0

⇒ assuming LTI causal, i.e. independent of future values
Considering the convolution of a causal system, the impulse response must only be non-zero
over region (−∞, t] i.e.

y (t) =
ˆ t

−∞
u (τ)h (t− τ) dτ

that is h (t− τ) = 0 for t < τ ⇒ t− τ < 0. Relabelling gives us

h (t) = 0, ∀t < 0

⇐ assuming h (t) = 0 for t < 0
Similar to above in reverse. By looking at the resulting convolutions

y (t) =
ˆ t

−∞
u (τ)h (t− τ) dτ

=
ˆ ∞

0
h (τ)u (t− τ) dτ

only depends on inputs during times up to t, thus system is causal.
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Question 26

‖y‖∞ = ‖h‖1 ‖u‖∞ when u (t) = 0

Question 27

A SISO LTI system (impulse response h (·)) is BIBO stable ⇔ ‖h‖1 < ∞ (i.e.
´∞
−∞ |h (τ)| dτ

exists) and further ‖y‖∞ ≤ ‖h‖1 ‖u‖∞ for any bounded input

⇐ assume ‖h‖1 <∞

|y (t)| =
∣∣∣∣∣
ˆ ∞
−∞

u (τ)h (t− τ) dτ
∣∣∣∣∣

≤
ˆ ∞
−∞
|u (τ)| |h (t− τ)| dτ

≤ ‖u‖∞
ˆ ∞
−∞
|h (t− τ)| dτ

= ‖u‖∞
ˆ ∞
−∞
|h (τ)| dτ

= ‖h‖1 ‖u‖∞

Since ‖h‖1 is finite, then for every bounded input, we have a bounded output (in particular
‖y‖∞ ≤ ‖h‖1 ‖u‖∞) thus our system is BIBO stable.

⇒ assume BIBO stable and assuming input is real (complex is covered in next question). We
choose the input

u (t) = sign (h (−t))

then

y (0) =
ˆ ∞
−∞

u (τ)h (0− τ) dτ

=
ˆ ∞
−∞

sign (h (−τ))h (−τ) dτ

=
ˆ ∞
−∞
|h (−τ)| dτ

= ‖h‖1

Thus if ‖h‖1 is unbounded, then our output is also unbounded (for a bounded input) - but since
BIBO stable output must be bounded, thus ‖h‖1 <∞.

Question 28

We consider the complex case in the above question. Here we use the complex conjugate as our
input function

u (t) = h̄ (−t)

and the rest follows as above.
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Question 29

Choosing transfer function (with 3 distinct poles with negative real part):

H (s) = 1
(s+ 1) (s+ 2) (s+ 3) =

1
2

s+ 1 + −1
s+ 2 +

1
2

s+ 3

We have partial fraction result (working removed for brevity)

Y (s) = H (s) ω0
s2 + ω2

0

=
ω0

2(1+ω2
0)

s+ 1 +
− ω0

(4+ω2
0)

s+ 2 +
ω0

2(9+ω2
0)

s+ 3 +

ω0(ω2
0−11)+i(6−6ω2

0)
2(1+ω2

0)(4+ω2
0)(9+ω2

0)
(s+ iω0) +

ω0(ω2
0−11)−i(6−6ω2

0)
2(1+ω2

0)(4+ω2
0)(9+ω2

0)
(s− iω0)

Thus in the form Y (s) =
∑n
i=1

αi
s−pi

+ α0
s+iω0

+ ᾱ0
s−iω0

we have

α1 = ω0
2
(
1 + ω2

0
) , α2 = − ω0(

4 + ω2
0
) , α3 = ω0

2
(
9 + ω2

0
)

α0 = ω0
(
ω2

0 − 11
)

+ i
(
6− 6ω2

0
)

2
(
1 + ω2

0
) (

4 + ω2
0
) (

9 + ω2
0
)

Giving

y (t) = ω0e
−t

2
(
1 + ω2

0
) − ω0e

−2t(
4 + ω2

0
) + ω0e

−3t

2
(
9 + ω2

0
) + 2 |α0| cos (ω0t+ φ) , t ≥ 0

Question 30

In above question

φ = tan−1
(= (α0)
< (α0)

)

= tan−1


6−6ω2

0
2(1+ω2

0)(4+ω2
0)(9+ω2

0)
ω0(ω2

0−11)
2(1+ω2

0)(4+ω2
0)(9+ω2

0)


= tan−1

(
6− 6ω2

0
ω0
(
ω2

0 − 11
))

The figure below is a plot of our system, and it shows the convergence to a pure sinusoidal form
(here with ω0 = 10)
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Question 31

Bode plots for system (Magnitude / Frequency). You can see that as we increase ω0 the we
have a point of convergence such that the frequency becomes a constant value (i.e. gives a pure
sinusoidal wave).

ω0 = 10

ω0 = 1000

Question 32

Not assessable - skipped

Question 33

1
λ
ḣ (t) + h (t) = δ (t) , h

(
0−
)

= 0

Solving via laplace

1
λ
sH (s)− h

(
0−
)

+H (s) = 1

H (s) = λ

s+ λ

h (t) = λe−λt, t > 0
= λe−λt1 (t)
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Question 34

Show transfer function as Laplace transform for

ÿ (t) + 2ζωnẏ (t) + ω2
ny (t) = ω2

nu (t)
ḧ (t) + 2ζωnḣ (t) + ω2

nh (t) = ω2
nδ (t) , ḣ (0) = 0, h (0) = 0

s2H (s) + 2ζωnsH (s) + ω2
nH (s) = ω2

n

H (s)
(
s2 + 2ζωns+ ω2

n

)
= ω2

n

H (s) = ω2
n

s2 + 2ζωns+ ω2
n

Question 35

Assume ζ 6= 1, find partial fractions

A

s+ ζωn − ωn
√
ζ2 − 1

+ B

s+ ζωn + ωn
√
ζ2 − 1

= ω2
n

s2 + 2ζωns+ ω2
n

(A+B)s+ (A+B)ζωn + (A−B)ωn
√
ζ2 − 1 = ω2

n

s A+B = 0 ⇒ A = −B

(A+B)ζωn + (A−B)ωn
√
ζ2 − 1 = ω2

n

(2A)ωn
√
ζ2 − 1 = ω2

n

A = ωn

2
√
ζ2 − 1

Thus system is

H (s) = M

s− c1
− M

s− c2

where M = ωn

2
√
ζ2−1

, c1,2 = −ζωn ± ωn
√
ζ2 − 1

Question 36

Apply inverse transform to above. Recall that L−1
(
M
s−α

)
= Me−αt1 (t)

h (t) = Mec1t1 (t)−Mec2t1 (t)
= M

(
ec1t − ec2t

)
1 (t)

Question 37

Assume ζ = 1. Find H (s) and h (t)

H (s) = ω2
n

s2 + 2ωns+ ω2
n

= ω2
n

(s+ ωn)2

From lookup table L−1
(

ω2
n

(s+ωn)2

)
= te−ωnt1 (t) thus

h (t) = ω2
nte
−ωnt1 (t)
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Question 38

It is clear from the below plots that ωn controls the undampened frequency while ζ controls the
dampening effect, this is obviously why they are called undamped natural frequency and damping
ratio (repectfully).

Changing ωn

Changing ζ

Question 39

This system often has exponential growth (unstable)

Y = (R+G2Y )G1H

Y (1−G1G2H) = RG1H

Y = RG1H

1−G1G2H
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