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Exercise 1

For linear interpolation, we obviously want K(0) = 1, and we want K to decay linearly until
n = 1, but we also want to it to build linearly from n = −1. Also, we want the data point
at t = 0 to effect only the previous and next points, so K(t) = 0 for all t /∈ [−1, 1]. So we
want

K(t) =


1− t −1 ≤ t ≤ 0
t− 1 0 < t ≤ 1

0 otherwise

For −1 ≤ t ≤ 1, this looks like the absolute value function. Outside of this region where the
absolute value is positive, the function takes the value 0. So this function can be represented
by

K(t) = max{1− |t|, 0}.

A simple example would be interpolating the points u(2n) = (2n)2 + 1, i.e. the points
(0, 1), (2, 5), (4, 17) . . .. Between the first two points we would expect the interpolation to be
a line with gradient 2 and intercept 1, i.e. ũ|[0,2](t) = 2t + 1. This interpolation gives for
t ∈ [0, 1]

ũ(t) =
∑
n

u(2n)K

(
t− 2n

2

)
=
∑
n

u(2n) max{1−
∣∣∣∣t− 2n

2

∣∣∣∣ , 0}
=u(0)

(
1− t

2

)
+ u(2)

(
1−

∣∣∣∣t− 2

2

∣∣∣∣)+ 0 + 0 + . . .

=

(
1− t

2

)
+ 5

(
t

2

)
=1 + 2t

which is what we expected.
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Exercise 2

I’m going to use the definition of cj as

min{j,n−1}∑
k=max{0,j−n+1}

akbk−j

as this avoids the convention of assuming non-defined co-efficients as 0, a convention which
can get messy in a proof by induction.

Consider the case where n = 1, then A(x) = a0, B(x) = b0 and

C(x) = a0b0 =
0∑

k=0

akbk−j,

so the result holds trivially. Now assume the result is true for n = m, and consider the case
n = m+ 1. Then

C(x) =A(x)B(x)

=
m+1−1∑
j=0

ajx
j

m+1−1∑
j=0

bjx
j

=

(
amx

m +
m−1∑
j=0

ajx
j

)(
bmx

m +
m−1∑
j=0

bjx
j

)

=amx
mbmx

m + bmx
m

m−1∑
j=0

ajx
j + amx

m

m−1∑
j=0

bjx
j +

m−1∑
j=0

ajx
j

m−1∑
j=0

bjx
j

=ambmx
2m + ajbmx

2m−1 + bjamx
2m−1 +

m−2∑
j=0

(
ajbmx

j+m + bjamx
j+m
)

+
m−1∑
j=0

ajx
j

m−1∑
j=0

bjx
j.

Define

D(x) =
2n−2∑
j=0

djx
j =

m−1∑
j=0

ajx
j

m−1∑
j=0

bjx
j.

Thus, by the assumption

D(x) =
2m−2∑
j=0

min{j,m−1}∑
k=max{0,j−m+1}

akbk−jx
j.
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So we have

C(x) =ambmx
2m + (ambm−1 + bmam−1)x2m−1

+
m−2∑
j=0

(
am−1bmx

j+m + bm−1amx
j+m
)

+
2m−2∑
j=0

min{j,m−1}∑
k=max{0,j−m+1}

akbk−jx
j

=
2m∑

j=2m−1

m∑
k=j−m

akbk−jx
j +

2m−2∑
j=m

(
aj−mbmx

j + bj−mamx
j
)

+
m−1∑
j=0

min{j,m−1}∑
k=max{0,j−m+1}

akbk−jx
j +

2m−2∑
j=m

min{j,m−1}∑
k=max{0,j−m+1}

akbk−jx
j

=
2m∑

j=2m−1

m∑
k=j−m

akbk−jx
j +

2m−2∑
j=m

(
aj−mbmx

j + bj−mamx
j
)

+
m−1∑
j=0

j∑
k=0

akbk−jx
j +

2m−2∑
j=m

m−1∑
k=j−m+1

akbk−jx
j

=
2m∑

j=2m−1

m∑
k=j−m

akbk−jx
j +

m−1∑
j=0

j∑
k=0

akbk−jx
j

+
2m−2∑
j=m

(
bmaj−mx

j + ambj−mx
j +

m−1∑
k=j−m+1

akbk−jx
j

)

=
2m∑

j=2m−1

m∑
k=j−m

akbk−jx
j +

m−1∑
j=0

j∑
k=0

akbk−jx
j +

2m−2∑
j=m

m∑
k=j−m

akbk−jx
j

=
m−1∑
j=0

j∑
k=0

akbk−jx
j +

2m∑
j=m

m∑
k=j−m

akbk−jx
j

=
2m∑
j=0

min{j,m}∑
k=max{0,j−m}

akbk−jx
j

=

2(m+1)−2∑
j=0

min{j,(m+1)−1}∑
k=max{0,j−(m+1)−1}

akbk−jx
j

so this result holds for n = m+ 1, thus, the statement is true by induction.
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Exercise 3

Firstly, differentiation:

D(f ∗ g) = D

∫ ∞
−∞

f(τ)g(t− τ) dx =

∫ ∞
−∞

D(f(τ)g(t− τ)) dx =

∫ ∞
−∞

f(τ)D(g(t− τ)) dx

=

∫ ∞
−∞

f(τ)(Dg)(t− τ)D(t− τ) dx =

∫ ∞
−∞

f(τ)(Dg)(t− τ)1 dx = f ∗D(g)

by the chain rule. Similarly,
D(g ∗ f) = D(f) ∗ g,

and since convolutions are commutative, we have

f ∗D(g) = D(f ∗ g) = D(g ∗ f) = D(f) ∗ g.

Now shift

D(f ∗ g)[n] = D
∞∑

m=−∞

f [m]g[n−m] =
∞∑

m=−∞

f [m]g[(n− 1)−m] = f ∗Dg

and substituting k = m− 1 gives

D(f∗g)[n] =
∞∑

m=−∞

f [m]g[(n−1)−m] =
∞∑

k=−∞

f [k−1]g[(n−1)−(k−1)] =
∞∑

k=−∞

D(f)[k]g[n−k] = Df∗g

thus
D(f ∗ g) = f ∗D(g) = D(f) ∗ g.

Exercise 4

Firstly, notice that f(t) = 1(t)− 1(t− 1). Using the Laplace transform,

L(f ∗ f) = f̂(s)2 =

(
1

s
− e−s

s

)2

=
1

s2
− 2e−s

s2
+
e−2s

s2
.
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Transforming back (using the table of Laplace transforms) gives

f ∗ f =t1(t)− 2(t− 1)1(t− 1) + (t− 2)1(t− 2)

=


0 t < 0
t 0 ≤ t < 1

t− 2(t− 1) 1 ≤ t < 2
t− 2(t− 1) + (t− 2) 2 ≤ t

=


0 t < 0
t 0 ≤ t < 1

2− t 1 ≤ t < 2
0 2 ≤ t

.

Repeating this process gives

L(f ∗3) = f̂(s)3 =
1

s3
− 3e−s

s3
+

3e−2s

s3
− e−3s

s3

and transforming back gives

f ∗3 =
1

2
t21(t)− 3

2
(t− 1)21(t− 1) +

3

2
(t− 2)21(t− 2)− 1

2
(t− 3)21(t− 3)

=


0 t < 0
t2

2
0 ≤ t < 1

1
2
(t2 − 3(t− 1)2) 1 ≤ t < 2

1
2
(t2 − 3(t− 1)2 + 3(t− 2)2) 2 ≤ t < 3

1
2
(t2 − 3(t− 1)2 + 3(t− 2)2 − (t− 3)2) 3 ≤ t

=


0 t < 0
t2

2
0 ≤ t < 1

−t2 + 3t− 3
2

1 ≤ t < 2
1
2
(t2 − 6t+ 9) 2 ≤ t < 3

0 3 ≤ t

.

Finally, repeating this again gives

L(f ∗4) = f̂(s)4 =
1

s4
− 4e−s

s4
+

6e−2s

s4
− 4e−3s

s4
+
e−4s

s4
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and transforming back gives

f ∗4 =
1

6
t31(t)− 4

6
(t− 1)31(t− 1) +

6

6
(t− 2)31(t− 2)− 4

6
(t− 3)31(t− 3) +

1

6
(t− 4)41(t− 4)

=



0 t < 0
t3

6
0 ≤ t < 1

1
6
(t3 − 4(t− 1)3) 1 ≤ t < 2

1
6
(t3 − 4(t− 1)3 + 6(t− 2)3) 2 ≤ t < 3

1
6
(t3 − 4(t− 1)3 + 6(t− 2)3 − 4(t− 3)3) 3 ≤ t < 4

1
6
(t3 − 4(t− 1)3 + 6(t− 2)3 − 4(t− 3)3 + (t− 4)3) 4 ≤ t

=



0 t < 0
t3

6
0 ≤ t < 1

1
6
(−3t3 + 12t2 − 12t+ 4) 1 ≤ t < 2

1
6
(3t3 − 24t2 + 60t− 44) 2 ≤ t < 3

1
6
(−t3 + 12t2 − 48t+ 64) 3 ≤ t < 4

0 4 ≤ t

.

For f2(t) = e−t1(t) we have

f ∗22 (t) =

∫ ∞
−∞

f2(τ)f2(t− τ) dτ =

∫ ∞
−∞

e−τ1(τ)e−t+τ1(t− τ) dτ =

∫ ∞
0

e−t+τ−τ1(t− τ) dτ

=

{ ∫ t
0
e−t dτ t > 0

0 otherwise
= te−t1(t).

Similarly

f ∗32 (t) =

∫ ∞
−∞

f2(τ)f ∗22 (t− τ) dτ =

∫ ∞
−∞

e−τ1(τ)e−t+τ (t− τ)1(t− τ) dτ

= 1(t)e−t
∫ t

0

t− τ dτ = e−t
t2

2
1(t)

and

f ∗42 (t) =

∫ ∞
0

e−τe−t+τ
(t− τ)2

2
1(t− τ) dτ =

1

2
1(t)e−t

∫ t

0

t2 − 2tτ + τ 2 dτ =
t3

6
e−t1(t).

Here are the plots of these functions.
It is clear from these graphs that effect of repeated self convolutions on a function is

to smooth it out. It appears that if the process was repeated indefinitely that resulting
function would be a smooth bell curve, or Gaussian distribution. This is not surprising, as if
the function f(t) was probability distribution function of a random variable (of finite mean
and variance), f ∗n would be the distribution of the sum of n independent and identically
distributed random variables. By the Central Limit Theorem, the mean of the sum of such
variables is approximately normally distributed.
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Figure 1: Self convolutions of f(t)=1(t)1(1− t)

Exercise 5

Assume f(t) is of exponential order as t→∞. Then there is a real σ and an M,T > 0 such
that for all t > T ,

|f(t)| < Meσt.

Then for some σ̃ > σ, we have
e−σ̃t|f(t)| < Me(σ−σ̃)t

for all t > T . Noting that −σ̃t ∈ R, e−σ̃t > 0, so

Me(σ−σ̃)t > e−σ̃t|f(t)| = |e−σ̃tf(t)| ≥ 0.

Since σ − σ̃ < 0, the limit as t → ∞ of the left hand side is 0, as is the limit of the right
hand side. So we have by the squeeze principle we have

lim
t→∞
|e−σ̃tf(t)| = 0.
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Figure 2: Self convolutions of f2(t) = e−t1(t)

Exercise 6

Let p(t), q(t) be polynomials. Then there are a finite number of poles of the equation p(t)
q(t)

.

Thus there is some number T such that for all t > T , q(t) 6= 0. Take σ̃ = 1. Now, if the

order of q is more than the order of p, then limt→∞
p(t)
q(t)

= 0, thus

lim
t→∞

∣∣∣∣e−tp(t)q(t)

∣∣∣∣ = lim
t→∞

e−t lim
t→∞

p(t)

q(t)
= 0.

If the order of q is the same as the order of p, then limt→∞
p(t)
q(t)

= M , for some M ∈ R. Thus

lim
t→∞

∣∣∣∣e−tp(t)q(t)

∣∣∣∣ = lim
t→∞

e−t
∣∣∣∣ limt→∞

p(t)

q(t)

∣∣∣∣ = 0× |M | = 0.

Finally, if the order of q is less than the order of p, then applying l’Hop ital’s rule, we have

lim
t→∞

∣∣∣∣e−tp(t)q(t)

∣∣∣∣ = lim
t→∞

∣∣∣∣ p′(t)

et(q(t) + q(t))

∣∣∣∣ = lim
t→∞

∣∣∣∣e−tp2(t)

q2(t)

∣∣∣∣
where q2(t) is of the same order as q(t) and p2(t) is of order one less. If the order of p2 is the
same as the order of q2, then the previous case can be applied, otherwise the order of p2 is
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still greater than the order of q2, in which case l’Hop ital’s rule can be applied again. Since
the order of a polynomial must be finite, eventually pn will have the same order as qn, and
then

lim
t→∞

∣∣∣∣e−tp(t)q(t)

∣∣∣∣ = lim
t→∞

∣∣∣∣e−tpn(t)

qn(t)

∣∣∣∣ = lim
t→∞

e−t
∣∣∣∣ limt→∞

pn(t)

qn(t)

∣∣∣∣ = 0× |M | = 0.

Exercise 7

b(t) is a polynomial, so it has a finite number of roots. Thus there is a largest root. Let
this root be t1 and choose T > t1. As the order of b is more than the order of a, then
limt→∞

a(t)
b(t)

= 0. This, combined with the fact that for t > T a(t)
b(t)

is a continuous function

means that supt>T
a(t)
b(t)

< ∞. Thus, there exists an M > 0 such that for all t > T ,
∣∣∣a(t)
b(t)

∣∣∣ <
M = Me0t. So the infimum over possible σ is less than or equal to 0.

Now assume that the infimum is not 0. Then there exists σ > 0 such that for some
M > 0 and for all t > T for some T ∈ R we have∣∣∣∣a(t)

b(t)

∣∣∣∣ < Me−σt

i.e. the abscissa of convergence is −σ < 0. But e−σt → 0 faster than a polynomial fraction
goes to 0 as t→∞, for any σ > 0. So we have a contradiction, which means the infimum is
greater than or equal to 0. Combined with the above reasoning, the infimum over possible
σ must be 0, so the abscissa of convergence is 0.

Exercise 8

Consider the curve in the complex plain defined by C = {σ + bi : −M ≤ b ≤ M} ∪ {z :
|z − σ| = M} = C1 ∪ C2. So

f(t) =

∫
C

est

(a+ s)2
ds =

∫
C

est

(a+ s)2
ds −

∫ 3π
2

π
2

eMeixt

(a+Meix)2
dx .

Since est is an analytic function, we can use Cauchy’s integral tehorem here. This theorem
states that the complex integral of a closed curve is equal to the sum over the number of
poles of the residues at each pole. For suffeciently large M , there is only one pole of the
integrand (at s = −a) in C, and the residue at this pole is d

ds
(est)|−a = te−at. So we have

f(t) = te−at −
∫ 3π

2

π
2

eMt cos(x)eiMt sin(x)

(a+Meix)2
dx .

Using fancy arguments from complex analysis we can show that teh second integral → 0 as
M →∞. Thus we have

f(t) = te−at.
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Exercise 9

L(eαt) = lim
T→∞

∫ T

0

e−steαt dt = lim
T→∞

[
1

α− s
eαt−st

]T
0

= lim
T→∞

1

α− s
[
eαT−sT − 1

]
=

1

s− α

[
1− lim

T→∞
e(a−σ)T (cos((b+ ω)T ) + i sin((b+ ω)T ))

]
where α = a + bi. This converges if a − σ < 0, i.e. <(α) < <(s). If this is true, then the
transform converges to

L(eαt) =
1

s− α
.

Exercise 10

Note that cos(bt) = 1
2
(eibt + e−ibt), so e−at cos(bt) = 1

2
e(−a+ib)t + 1

2
e(−a−ib)t. Since Laplace

transforms are linear, we can just apply the result of Exercise 9 twice with α = −a+ bi and
α = −a− bi to yield

L(e−at cos(bt)) =
1

2
L(e(−a+bi)t) +

1

2
L(e(−a−bi)t) =

1

2s+ 2a− 2bi
+

1

2s+ 2a+ bi

with a region of convergence that satisfies both <(−a+ bi) < <(s) and <(−a− bi) < <(s),
i.e <(s) > max{<(−a− bi),<(−a+ bi)}. The transform can be simplified to give

L(e−at cos(bt)) =
s+ a+ bi

2s2 + 4sa− 2a2 + 2b2
+

s+ a− bi
2s2 + 4sa+ 2a2 + 2b2

=
s+ a

(s+ a)2 + b2
.

Exercise 11

Let X(s) = L(x(t)) and note that L(cos
(
t
2

)
) = 4s

4s2+1
. Transforming the equation gives

−ẋ(0)− sx(0) + s2X(s) + 6X(s) =
4s

4s2 + 1
.

Subbing in the initial conditions gives

0− 0 + (s2 + 6)X(s) =
4s

4s2 + 1

and rearranging for X(s),

X(s) =
4s

(4s2 + 1)(s2 + 6)
=
As+B

4s2 + 1
+
Cs+D

s2 + 6
=
As3 + 6As+Bs2 + 6B + 4Cs3 + Cs+ 4Ds2 +D

(4s2 + 1)(s2 + 6)
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where partial fractions are being used. Equating coefficients of s0 and s2 gives D = −6B
and B = −4D, so B = D = 0. Equating coefficients of s3 gives A = −4C so coefficients of
s1 gives the equation 4 = −24C + C = −23C. So we have

X(s) =
16s

23(4s2 + 1)
− 4s

23(s2 + 6)
.

Transforming back (using the table of transforms) gives

x(t) =
4

23
cos

(
t

2

)
− 4

23
cos(
√

6t).

Exercise 12

Assume f, g are of exponential order, and that they are both only defined for t ≥ 0, and 0
otherwise. Then

L(f(t) ∗ g(t)) =

∫ ∞
0

e−stf(t) ∗ g(t) dt =

∫ ∞
0

e−st
∫ ∞
−∞

f(τ)g(t− τ) dτ dt

=

∫ ∞
0

e−st
∫ t

0

f(τ)g(t− τ) dτ dt

since the integrand is zero when τ < 0 and when τ > t. The integration is over the set
{(t, τ) : 0 < t < ∞, 0 < τ < t}, which is the same set as {(t, τ) : 0 < τ < ∞, τ < t < ∞}.
Assuming these functions are nice enough, we can change the order of integration by Fubini’s
theorem. This gives ∫ ∞

0

∫ ∞
τ

e−stf(τ)g(t− τ) dt dτ

Changing variables by r = t− τ with dr = dt and t = −τ ⇒ r = 0 gives∫ ∞
0

∫ ∞
0

e−s(r+τ)f(τ)g(r) dτ dt =

∫ ∞
0

∫ ∞
0

e−sτf(τ)e−srg(r) dr dτ

=

∫ ∞
0

e−srg(r) dr

∫ ∞
0

e−sτf(τ) dτ = L(f(t))L(g(t)).

Now, if we can’t assume that f, g are 0 for t < 0, we have to take the Bilateral Laplace
transform:

LB(f(t) ∗ g(t)) =

∫ ∞
−∞

e−stf(t) ∗ g(t) dt =

∫ ∞
−∞

e−st
∫ ∞
−∞

f(τ)g(t− τ) dτ dt

=

∫ ∞
−∞

∫ ∞
−∞

e−stf(τ)g(t− τ) dt dτ
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by Fubini’s theorem. Changing variables by r = t− τ gives dr = dt and∫ ∞
−∞

∫ ∞
−∞

e−s(r+τ)f(τ)g(r) dr dτ =

∫ ∞
−∞

∫ ∞
−∞

e−sτf(τ)e−srg(r) dr dτ

=

∫ ∞
−∞

e−srg(r) dr

∫ ∞
−∞

e−sτf(τ) dτ = LB(f(t))LB(g(t)).

Exercise 13

s2 +2s −1
s2 +1

)
s4 +2s3 +s +2
s4 +s2

2s3 −s2 +s
2s3 +2s

−s2 −s +2
−s2 −1

−s +3

Exercise 14

From example:

s− 1

(s+ 1)2(s− 2)
=

A

s+ 1
+

B

(s+ 1)2
+

C

s− 2
=
A(s2 − s− 2) +B(s− 2) + C(s2 + 2s+ 1)

(s+ 1)2(s− 2)
.

Equating numerators gives

s− 1 = (A+ C)s2 + (B − A+ 2C)s+ (−2A− 2B + C).

Equating co-efficients of s2 gives A = −C, so we get the pair of equations 1 = B−A+ 2C =
B + 3C and −1 = −2A− 2B + C = −2B + 3C. Rearranging for 3C gives 1− B = 2B − 1
which implies B = 2

3
, C = 1

9
and A = −1

9
. Thus,

s− 1

(s+ 1)2(s− 2)
=

−1

9(s+ 1)
+

2

3(s+ 1)2
+

1

9(s− 2)
.

Exercise 15

First note that s2 + 2s+ 5 has no real roots (22 − 4 · 1 · 5 = −16 < 0).

s+ 3

(s2 + 2s+ 5)(s+ 1)
=

As+B

s2 + 2s+ 5
+

C

s+ 1
=
As2 + As+Bs+B + Cs2 + 2Cs+ 5C

(s2 + 2s+ 5)(s+ 1)
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Equating co-efficients of s2 gives A = −C so equating the other co-efficients gives 1 = B−A
and 3 = B − 5A. Thus A = −1

2
, B = 1

2
and C = 1

2
. So we have

s+ 3

(s2 + 2s+ 5)(s+ 1)
=

−s+ 1

2(s2 + 2s+ 5)
+

1

2(s+ 1)
.

Exercise 16

Note that sin(t) = eit−e−it
2i

. So we have

f̂(ω) =

∫ ∞
−∞

eit − e−it

2it
eiωt dt =

∫ ∞
−∞

e(ω+1)it − e(ω−1)it

2it
dt .

The integral of e−t

t
is not an analytic function. This question could be continued using

the special function Ei(t), which is the exponential integral function, however, a different
method will be used to do this question. Sine, when broken into exponentials, looks a bit
like the result of the fundamental theorem of calculus. Define F (x) = ext. Then we have

f̂(ω) =

∫ ∞
−∞

eit − e−it

2it
eiωt dt =

∫ ∞
−∞

eiωt

2it
(F (i)− F (−i)) dt

=

∫ ∞
−∞

eiωt

2it

∫ i

−i
F ′(x) dx dt =

∫ ∞
−∞

eiωt

2it

∫ i

−i
text dx dt

=

∫ ∞
−∞

eiωtt

2it

∫ ∞i
−∞i

χ[−1,1](x)ext dx dt

using x as a dummy variable. Switching variables to x = si, dx = i dx gives

f̂(ω) =

∫ ∞
−∞

eiωt

2i

∫ ∞
−∞

χ[−1,1](si)e
ist dx dt =

∫ ∞
−∞

eiωt
1

2π

∫ ∞
−∞

πχ[−1,1](is)e
ist dx dt

=

∫ ∞
−∞

eiωtF−1
(
πχ[−1,1](t)

)
dt = F

(
F−1

(
πχ[−1,1](t)

))
= πχ[−1,1](ω).

So this is the Laplace transform.

Exercise 17

Using Matlab, the commands bode(tf(1,[1,1,2])) and nyquist(tf(1,[1,1,2])) create the Bode
(figure 3) and Nyquist (figure 4) plots for the system

H(s) =
1

s2 + s+ 2
.
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Figure 3: Bode Plot for the transfer function H(s) = 1
s2+s+2

.

Exercise 18

Two generalised functions η1, η2 are are equal if∫ ∞
−∞

η1(t)φ(t) dt =

∫ ∞
−∞

η2(t)φ(t) dt

for φ ∈ C∞0 (R). Consider∫ ∞
−∞

(α1δ(t)+α2δ(t))φ(t) dt =

∫ ∞
−∞

α1δ(t)φ(t)+α2δ(t)φ(t) dt =

∫ ∞
−∞

α1δ(t)φ(t) dt +

∫ ∞
−∞

α2δ(t)φ(t) dt

= α1φ(0) + α2φ(0) = (α1 + α2)φ(0) =

∫ ∞
−∞

(α1 + α2)δ(t)φ(t) dt .

Thus
α1δ(t) + α2δ(t) = (α1 + α2)δ(t).
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Figure 4: Nyquist Plot for the transfer function H(s) = 1
s2+s+2

.

Exercise 19

Again, two generalised functions η1, η2 are are equal if∫ ∞
−∞

η1(t)φ(t) dt =

∫ ∞
−∞

η2(t)φ(t) dt

for φ ∈ C∞0 (R). Consider∫ ∞
−∞

f(t)δ(t− τ)φ(t) dt =

∫ ∞
−∞

f(s+ τ)δ(s)φ(s+ τ) ds = f(τ)φ(τ)

by a change of variables s = t− τ and the definition of δ(t). Now consider∫ ∞
−∞

f(τ)δ(t− τ)φ(t) dt =

∫ ∞
−∞

f(τ)δ(s)φ(s+ τ) ds = f(τ)φ(τ) =

∫ ∞
−∞

f(t)δ(t− τ)φ(t) dt .

Thus
f(t)δ(t− τ) = f(τ)δ(t− τ).
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Exercise 20

We may assume ∫ ∞
0

φ(t) dt =

∫ ∞
−∞

1(t)φ(t) dt

for all integrable φ(t). So consider integrable φ(t) and define

ψ(t) =

{
φ(t) t < 0

0 t ≥ 0

Since φ and 0 are integrable, ψ is integrable also. Then we have∫ ∞
−∞

1(t)ψ(t) dt =

∫ ∞
0

ψ(t) dt

∫ 0

−∞
1(t)φ(t) dt =

∫ ∞
0

0 dt = 0.

But φ is arbitrary. So 1(t) = 0 for all t < 0.
Now consider integrable φ(t) and define

ψ(t) =

{
0 t < 0
φ(t) t ≥ 0

Again, φ and 0 are integrable, so ψ is integrable also. Then we have∫ ∞
−∞

1(t)ψ(t) dt =

∫ ∞
0

ψ(t) dt

∫ ∞
0

1(t)φ(t) dt =

∫ ∞
0

φ(t) dt∫ ∞
0

(1(t)− 1)φ(t) dt = 0.

Again, φ is arbitrary. So 1(t)− 1 = 0 for all t ≥ 0. Thus, we must have

1(t) =

{
0 t < 0
1 t ≥ 0.
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Exercise 21

Fix θ ∈ R. Changing variables and integration by parts gives∫ ∞
−∞

1′(t− θ)φ(t) dt =

∫ ∞
−∞

1(t)′φ(t− θ) dt = −
∫ ∞
−∞

1(t)φ′(t+ θ) dt

applying the definition of the step function and remembering that φ(t) has compact support
(so φ(∞) = 0), we get

= −
∫ ∞

0

φ′(t−θ) dt = −(φ(θ)−φ(θ+∞)) = φ(θ+0) =

∫ ∞
−∞

δ(t)φ(θ+t) dt =

∫ ∞
−∞

δ(t−θ)φ(t) dt

after applying the definition of φ(t) again and performing another change of variables. Since∫ ∞
−∞

1′(t− θ)φ(t) dt =

∫ ∞
−∞

δ(t− θ)φ(t) dt

for arbitrary integrable φ(t) with compact support, we have

1′(t− θ) = δ(t− θ).

Exercise 22

The linearity property holds for
2∑
i=1

αiui(t),

so assume it holds for N , i.e.

O

(
N∑
i=1

αiui(t)

)
=

N∑
i=1

αiO (ui(t)) .

Consider
N+1∑
i=1

αiui(t),

and define
N∑
i=1

αiui(t) = v(t).

Then
N+1∑
i=1

αiui(t) = v(t) + αn+1un+1(t).
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So we have

O

(
N+1∑
i=1

αiui(t)

)
= O (v(t) + αn+1un+1(t)) = O(v(t)) +O (αn+1un+1(t))

=

(
N∑
i=1

αiui(t)

)
+O (αn+1un+1(t)) =

N∑
i=1

αiO (ui(t)) +O (αn+1un+1(t)) =
N∑
i=1

αiO (ui(t)) .

Thus the proposition is true by induction.

Exercise 23

Memory-less: In this case y(n) can only depend on the current value of u i.e u(n), so m can
only be 0, so for this system to be memoryless, M = N = 0. The other parameters are free
α, β ∈ R.

Causal: In this case y(n) can only depend on the current and previous values of u i.e
u(m), ∀m ≤ n. So, m cannot be greater than 0 for this system, which means N ≤ 0. The
other parameters are free α, β ∈ R and M ∈ N. To prove this is causal, fix k ∈ Z and let
N ≤ 0 and let u1 and u2 be two inputs such that u1(n) = u2(n) for all n ≤ k. Then

y1(n) =
1

M +N + 1

N∑
m=−M

(u1(n+m))α+β cos(n) =
1

M +N + 1

N∑
m=−M

(u2(n+m))α+β cos(n) = y2(n).

So the system is casual.
Linear: Let u(n) = α1u1(n) + α2u2(n). Then,

y(n) =
1

M +N + 1

N∑
m=−M

(u(n+m))α+β cos(n) =
1

M +N + 1

N∑
m=−M

(α1u1(n)+α2u2(n))α+β cos(n).

This will be linear iff α = 1, β = 0. If this is the case, we have

y(n) =
1

M +N + 1

N∑
m=−M

α1u1(n)+α2u2(n) =
α1

M +N + 1

N∑
m=−M

u1(n)+
α2

M +N + 1

N∑
m=−M

u1(n)

= α1y1(n) + α2y2(n).

Any other value of α or β will result in a u1(n)u2(n) term in the sum, which won’t be 0 for
general u1, u2, so the result wouldn’t be linear. M and N can take any values in Z.

Time-invariant: Fix some k ∈ Z.

O (u(n− k) =
1

M +N + 1

N∑
m=−M

(u((n− k) +m))α+β cos(n)
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but

y(n− k) =
1

M +N + 1

N∑
m=−M

(u(n− k +m))α+β cos(n−k).

So the system is time invariant (i.e. O (u(n− k) = y(n − k)) iff β cos(n − k) = β cos(n). k
was arbitrary, so this must be true for all k ∈ Z. Thus β = 0. The other parameters are
free, M,N ∈ N and α ∈ R.

Exercise 24

Assume the LTI system y(t) = O(u(t)) is memoryless. Then y(t) = g(u(t)) for some scalar
function g. But the system is linear, so for input u1 and u2 g(u1(t) + u2(t)) = g(u1(t)) +
g(u2(t)). This implies the system has the form y(t) = Ku(t) for some A ∈ R. Then
h(t) = O(δ(t)) = Kδ(t).

Now assume h(t) = Kδ(t) for some LTI system. So y(t) = (u ∗ h)(t) = (u ∗ Kδ)(t) =
K(u ∗ δ)(t) = Ku(t) = g(u(t)) for a scalar function g(·) = K × ·. Thus the system is
memory-less. Thus an LTI system is memory-less iff h(t) = Kδ(t).

Exercise 25

Assume the LTI system y(t) = O(u(t)) is causal. Then ∀t0 ∈ R and u1 and u2 such that
u1(t) = u2(t) for all t ≤ t0, y1(t) = y2(t) for all t ≤ t0. The system is linear, so for input
u1(t) ≡ 0 and arbitrary u2(t), we have y1(t)+y2(t) = O(u1(t)+u2(t)) = O(0+u2(t)) = y2(t),
thus y1(t) ≡ 0. Now, as the system is causal, choose t0 = 0. For all t < 0 u1(t) = δ(t), so
h(t) = h(t) + y1(t) = O(δ(t)) +O(u1(t)) = 0.

Now assume for all t < 0, h(t) = 0 for an LTI system. Let t0 ∈ R be arbitrary and
consider u1 and u2 such that u1(t) = u2(t) for all t ≤ t0. So

yi(t) = (h ∗ ui)(t) =

∫ ∞
−∞

ui(τ)h(t− τ) dτ .

But h(t) = 0 for all t < 0, so for all τ > t the integrand becomes 0. So we have

yi(t) =

∫ t

−∞
ui(τ)h(t− τ) dτ .

If we fix T ≤ t0, then

yi(T ) =

∫ T

−∞
ui(τ)h(T − τ) dτ

but u1(t) = u2(t) for all t ≤ T . Thus y1(T ) = y2(T ) for all t ≤ T , and since T and t0 were
arbitrary, this system is causal.
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Exercise 26

Assume this system is BIBO. Then ||h(t)||1 < ∞. If u(t) = 0, then ||u||∞ = 0 and y(t) =
h(t) ∗ 0 = 0, so ||y||∞ = 0. Thus ||y||∞ = 0 = 0||h(t)||1 = ||h(t)||1||u||∞ and equality is
achieved.

Exercise 27

Assume this system is BIBO. Then ||h(t)||1 <∞. Then

|y(t)| =
∣∣∣∣∫ ∞
−∞

h(t− τ)u(τ) dτ

∣∣∣∣ ≤ ∫ ∞
−∞
|h(t− τ)u(τ)| dτ ≤

∫ ∞
−∞
|h(t− τ)| ‖u‖∞ dτ

= ‖u‖∞ ‖h(t− τ)‖1 .

Again, to prove this is a necessary condition, use u(t) = sgn(h(−t)). Then

y(0) =

∫ ∞
−∞

h(0− τ) sgn(h(−τ)) dτ =

∫ ∞
−∞
|h(−τ)| dτ = ‖h(t− τ)‖1 ,

thus if ‖h(t)‖1 ≮ ∞, then y is not necessarily bounded. So ‖h(t− τ)‖1 < ∞ is a necessary
condition.

Exercise 28

The proof in Exercise 27 still holds for complex valued functions, other than the proof
||h(t)||1 <∞ is a necessary condition.

To prove this is a necessary condition, use u(t) =
¯h(−t)

|h(−t) . Then

y(0) =

∫ ∞
−∞

h(0− τ)
¯h(−t)

|h(−t)
dτ =

∫ ∞
−∞

|h(−t)|2

|h(−t)
dτ =

∫ ∞
−∞
|h(−τ)| dτ = ‖h(t)‖1 ,

thus if ‖h(t)‖1 ≮ ∞, then y is not necessarily bounded. So ‖h(t− τ)‖1 < ∞ is a necessary
condition.

Exercise 29

Choose H(s) = 1
(s+1)(s2+2s+2)

, then

Y (s) =
ω0

(s2 + ω2
0)(s+ 1)(s2 + 2s+ 2)

=
A

(s+ 1)
+

Bs+ C

(s2 + 2s+ 2)
+

Ds+ E

(s2 + ω2
0)
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=
D(s4 + 3s3 + 4s2 + 2s) + E(s3 + 3s2 + 4s+ 2) + A(s4 + 2s3 + 2s2 + ω2

0s
2 + 2ω2

0s+ 2ω2
0)

(s2 + ω2
0)(s+ 1)(s2 + 2s+ 2)

+
B(s4 + s3 + ω2

0s
2 + ω2

0s) + C(s3 + s2 + ω2
0s+ ω2

0)

(s2 + ω2
0)(s+ 1)(s2 + 2s+ 2)

Equating co-efficients gives the equations

D = −A−B

0 = 3D + E + 2A+B + C

0 = 4D + 3E + (2 + ω2
0)A+ ω2

0B + C

0 = 2D + 4E + 2ω2
0A+Bω2

0 + Cω2
0

ω0 = 2E + 2Aω2
0 + ω2

0C

Subbing in the first equation gives

A = −2B + E + C

0 = −4B + 3E + (−2 + ω2
0)A+ ω2

0B + C

0 = −2A− 2B + 4E + 2ω2
0A+Bω2

0 + Cω2
0

ω0 = 2E + 2Aω2
0 + ω2

0C

Subbing in the first of these equations gives

0 = E + ω2
0(E + C −B)− C

0 = 2B − 2C + 2E − 3Bω2
0 + 2Eω2

0 + 3Cω2
0

ω0 = 2E − 4Bω2
0 + 2Eω2

0 + 3Cω2
0

Subbing in

B =
1

ω2
0

E + E + C − 1

ω2
0

C

gives

0 = 2
1

ω2
0

E + E + 3C − 2
1

ω2
0

C − Eω2
0

ω0 = −2E − 2Eω2
0 − Cω2

0 + 4C

Finally, subbing

C =
2E + Eω2

0 − Eω4
0

−3ω2
0 + 2
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and re-arranging for E

ω0 =− 2E − 2Eω2
0 −

2Eω2
0 + Eω4

0 − Eω6
0

−3ω2
0 + 2

+
8E + 4Eω2

0 − 4Eω4
0

−3ω2
0 + 2

=E
1

ω2
0

(
(−2− 2ω2

0)(−3ω2
0 + 2)

−3ω2
0 + 2

− 4ω2
0 − 5ω4

0 + ω6
0 + 8

−3ω2
0 + 2

)
=E

1

ω2
0

(
4ω2

0 + ω4
0 + ω6

0 + 4

−3ω2
0 + 2

)
E =

−3ω3
0 + 2ω0

4ω2
0 + ω4

0 + ω6
0 + 4

Substituting this back into the other variables (using Mathematica) gives

C =
−ω3

0 + 2ω0

ω4
0 + 4

B =
−ω3

0

ω4
0 + 4

A =
ω0

ω2
0 + 1

and

D =
ω3

0 − 4ω0

4ω2
0 + ω4

0 + ω6
0 + 4

.

So we have

Y (s) =
ω0

(ω2
0 + 1)(s+ 1)

+
−ω3

0s− ω3
0 + 2ω0

(ω4
0 + 4)(s2 + 2s+ 2)

+
(ω3

0 − 4ω0)s− 3ω3
0 + 2ω0

(4ω2
0 + ω4

0 + ω6
0 + 4)(s2 + ω2

0)

Finally, noting that

a+ bi

s+ iω0

+
a− bi
s− iω0

=
as− aω0i+ bis+ bω0 + as+ aω0i− bsi+ bω0

s+ ω2
0

=
2as+ 2bω0

s2 + ω2
0

,

so
Ds+ E

s2 + ω2
0

=
ω0D + iE

2ω0(s+ iω0)
+

ω0D − iE
2ω0(s− iω0)

and the expression becomes

Y (s) =
ω0

(ω2
0 + 1)(s+ 1)

+
−ω3

0s− ω3
0 + 2ω0

(ω4
0 + 4)(s2 + 2s+ 2)

+
(ω4

0 − 4ω2
0 − 3iω3

0 + 2iω0

(4ω2
0 + ω4

0 + ω6
0 + 4)(s+ iω0)

+
ω4

0 − 4ω2
0 + 3iω3

0 − 2iω0

2ω0(4ω2
0 + ω4

0 + ω6
0 + 4)(s− iω0)

So from the question,
α0 = ω4

0 − 4ω2
0 − 3iω3

0 + 2iω0.



Mitch Gooding 23

Exercise 30

Transforming back (using the formula in the notes) gives

y(t) =
ω0e

−t

(ω2
0 + 1)

+
−ω3

0

ω4
0 + 4

e−t cos t+
2ω0

ω4
0 + 4

e−t sin t+ 2|ω4
0 − 4ω2

0 − 3iω3
0 + 2iω0| cos(ω0t+ φ)

where

φ = tan−1

(
=α0

<α0

)
= tan−1

(
−3ω3

0 + 2ω0

ω4
0 − 4ω2

0

)
= tan−1

(
2− 3ω2

0

ω0(ω0 − 2)(ω0 + 2)

)

This plot shows that all but the sinusoidal term decays away almost immediately, for multiple
frequencies. Furthermore, there is a trend that as the frequency increases, the amplitude of
the graph increases. We can also observe from this graph that the phase shift of the response
varies as with the frequency.
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Exercise 31

As observed above, the amplitude of the response increases as the frequency increases, which
is what we observe in the top graph of this Bode plot. We also observed that the phase shift
of the response depends on the frequency. The lower graph in this Bode plot makes this
relationship clearer.

Exercise 32

Omitted.

Exercise 33

Let φ(t) ∈ C∞0 (R). Then∫ ∞
−∞

(
1

λ
ḣ(t) + h(t)

)
φ(t) dt =

−1

λ

∫ ∞
−∞

h(t)φ̇(t) dt +

∫ ∞
−∞

h(t)φ(t) dt =

−1

λ

∫ ∞
−∞

λe−λt1(t)φ̇(t) dt +

∫ ∞
−∞

λe−λt1(t)φ(t) dt =

∫ ∞
0

−e−λtφ̇(t) dt +

∫ ∞
0

λe−λtφ(t) dt .
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Integrating the first term by parts again gives

=
[
−e−λtφ(t)

]∞
0

+

∫ ∞
0

λe−λtφ(t) dt +

∫ ∞
0

λe−λtφ(t) dt =
[
−e−λtφ(t)

]∞
0

= 0−−φ(0) = φ(0)

since φ has compact support. By definition of the delta distribution, we have∫ ∞
−∞

δ(t)φ(t) dt = φ(0) =

∫ ∞
−∞

(
1

λ
ḣ(t) + h(t)

)
φ(t) dt .

Thus δ(t) = 1
λ
ḣ(t) + h(t) in the distributional sense.

Exercise 34

Taking the Laplace transform gives:

ω2
n = −ḣ(0)− sh(0) + s2H(s) + 2ζωn(−h(0) + sH(s)) + ω2

nH(s)

= H(s)(s2 + 2ζωns+ ω2
n)− ḣ(0)− sh(0)− 2ζωnh(0)

which, after rearranging gives

H(s) =
ḣ(0) + sh(0) + 2ζωnh(0) + ω2

n

s2 + 2ζωns+ ω2
n

.

If ḣ(0) = h(0) = 0, then

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

.

Exercise 35

Assuming ζ 6= 1 we have s2 + 2ζωns+ ω2
n = (s− c1)(s− c2), where c1 = −ζωn + ωn

√
ζ2 − 1

and c1 = −ζωn − ωn
√
ζ2 − 1. So

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
A

s− c1

+
B

s− c2

=
As− Ac1 +Bs−Bc2

(s− c1)(s− c2)
.

Equating co-efficients of s we get A = −B, so define A = M = −B. Equating s0 co-efficients
we get

ω2
n = Mc2 −Mc1 = Mζωn +Mωn

√
ζ2 − 1−Mζωn +Mωn

√
ζ2 − 1 = 2Mωn

√
ζ2 − 1.

So

M =
ω2
n

2ωn
√
ζ2 − 1

=
ωn

2
√
ζ2 − 1
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Exercise 36

If

H(s) =
M

s− c1

− M

s− c2

then (from Laplace transform tables) L (eat1(t)) = 1
s−a , then by linearity of the inverse

Laplace transform, we have

h(t) = L−1(H(s)) = L−1

(
M

s− c1

− M

s− c2

)
= ML−1

(
1

s− c1

)
−ML−1

(
1

s− c2

)
= Mec1t1(t)−Mec2t1(t) = M(ec1t − ec2t)1(t)

Exercise 37

Assuming ζ = 1 we have s2 + 2ωns+ ω2
n = (s+ ωn)2. So

H(s) =
ω2
n

(s+ ωn)2
.

From Laplace transform tables L (teat) = 1
s−a

2
, so

h(t) = L−1(H(s)) = L−1

(
ω2
n

(s+ ωn)2

)
= ω2teωt.

Exercise 38

The poles of H(s) are simple to investigate. As seen above, if ζ = 1, then there is only
one pole of H(s), at s = ω, and if ζ 6= 1, then there are exactly two poles, at c1 =
−ζωn + ωn

√
ζ2 − 1 and c1 = −ζωn − ωn

√
ζ2 − 1.

The following graphs (figure 5 and 6) show h(t) for various parameters.
Figure 5 shows that the peak in the transfer function increases as ωn. We can think of an

impulse as a brief exposure of the system to an extremely high frequency signal. When an
input signal is close to the resonant frequency of the system, system begins to resonate. So if
a system has a high resonant frequency, then we would expect it to react more to an impulse
than a system with a lower resonant frequency. The transfer function is the response to an
impulse, so since the peak in the transfer function correlates with ωn, it is natural to think
of the parameter ωn as the natural frequency of the system.

Figure 6 shows that as ζ increases, the time it takes for disturbances in the system to
decay away increases. After the impulse is applied to the system, we would expect the
reaction of the system to decay as time goes to infinity. If the system is heavily dampened,
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Figure 5: h(t) for different values of ζ. Red indicates ωn < 1, blue indicates ωn > 1 and
green indicates ωn = 1. For these graphs, ζ = 2 was kept constant.
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Figure 6: h(t) for different values of ζ. Red indicates ζ < 1, blue indicates ζ > 1 and green
is the special case where ζ = 1. For these graphs, ωn = 1 was kept constant.
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any disturbance caused by the impulse would decay away very quickly, which is what we see
for large ζ. Furthermore, if there is very little dampening, then the oscillations cause by the
impulse do not decay quickly, which is what we see for small ζ. So this parameter is clearly
related to the dampening of the system. It is called the dampening ratio as it,...?

Exercise 39

Like in the calculation in the notes,

Y (s) = U(s)H(s) = E(s)G1(s)H(s)

but now the equation would become

Y (s) = (R(s) + Ym(s))G1(s)H(s) = (R(s) +G2(s)Y (s))G1(s)H(s)

which would yield the equation

Y (s) =
R(s)G1(s)H(s)

1−G2(s)G1(s)H(s)

when rearranged for Y (s). So the feedback system would be

H̃(s) =
G1(s)H(s)

1−G2(s)G1(s)H(s)

since Y (s) = R(s)H̃(s).

Exercise 40

Omitted


