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Question 1

Lemma 0.1. For j ∈ N+,∫ t

0

a(s) ds + . . .+

∫ t

0

a(s) . . .

∫ sj−1

0

a(u) du . . . ds =
1

j!

(∫ t

0

a(u) du

)j
.

Proof. Now, notice that

d

dt

(∫ t

0

a(s) ds

)2

= 2a(t)

∫ t

0

a(s) ds

by the product rule. Thus,∫ t

0

a(s)

∫ s

0

a(u) du ds =
1

2

(∫ t

0

a(u) du

)2

.

Assume for induction that∫ t

0

a(s) ds + . . .+

∫ t

0

a(s) . . .

∫ sj−1

0

a(u) du . . . ds =
1

j!

(∫ t

0

a(u) du

)j
and consider

d

dt

(∫ t

0

a(s) ds

)j+1

= (j+1)a(t)

(∫ t

0

a(s) ds

)j
= (j+1)a(t)j!

∫ t

0

a(s) ds +. . .+

∫ t

0

a(s) . . .

∫ sj−1

0

a(u) du . . . ds ,

by the assumption. Thus we have

1

(j + 1)!

(∫ t

0

a(s) ds

)j+1

=

∫ t

0

a(s) ds + . . .+

∫ t

0

a(s) . . .

∫ sj

0

a(u) du . . . ds

so the assumption is true by induction and we have∫ t

0

a(s) ds + . . .+

∫ t

0

a(s) . . .

∫ sj−1

0

a(u) du . . . ds =
1

j!

(∫ t

0

a(u) du

)j
.

1
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By Picard iterations we have

x1(t) = x0 +

∫ t

0

a(s)x0 ds = x0

(
1 +

∫ t

0

a(s) ds

)

x2(t) = x0+

∫ t

0

a(s)x0

(
1 +

∫ s

0

a(u) du

)
ds = x0

(
1 +

∫ t

0

a(s) ds +

∫ t

0

a(s)

∫ s

0

a(u) du ds

)
Assume

xj(t) = x0

(
1 +

∫ t

0

a(s) ds + . . .+

∫ t

0

a(s) . . .

∫ sj−1

0

a(u) du . . . ds

)
.

Then

xj+1(t) = x0+

∫ t

0

a(s)x0

(
1 +

∫ s

0

a(u) du + . . .+

∫ s

0

a(s2) . . .

∫ sj

0

a(u) du . . . ds2

)
ds = x0

(
1 +

∫ t

0

a(s) ds +

∫ t

0

a(s)

∫ s

0

a(u) du ds + . . .+

∫ t

0

a(s)

∫ s

0

a(s2) . . .

∫ sj

0

a(u) du . . . ds2 ds

)
.

So

xj(t) = x0

(
1 +

∫ t

0

a(s) ds + . . .+

∫ t

0

a(s) . . .

∫ sj−1

0

a(u) du . . . ds

)
is true for general j ∈ N by induction. By the Lemma we then have

xj(t) = x0

(
1 +

(∫ t

0

a(s) ds

)1

+ . . .+
1

j!

(∫ t

0

a(s) ds

)j)
= x0

j∑
i=0

1

j!

(∫ t

0

a(s) ds

)j
.

A property of Picard iterations is that

lim
j→∞

xj(t) = x(t)

but
∫ t
0
a(s) ds is just a real number, so by the Taylor expansion of the exponetial function,

we have

x(t) = lim
j→∞

xj(t) = x0
∑

i = 0∞
1

j!

(∫ t

0

a(s) ds

)j
= x0e

∫ t
0 a(s) ds

which is the desired result, assuming x(0) = x0 = a(0).

Question 2

By Cayley-Hamilton we have that 0 = d0I + d1A + d2A
2 + . . . + dn−1A

n−1 + An, where
sn +

∑n−1
i=0 dis

i is the characteristic polynomial of A. So An = −
∑n−1

i=0 diA
i. Assume for

induction that An+k =
∑n−1

i=0 cikA
i for some k ∈ N+ and constants cik ∈ R. Then

An+k+1 = AAn+k =
n−1∑
i=0

cikA
i+1 = cn−1,kA

n +
n−2∑
i=0

cikA
i+1 = −cn−1,k

n−1∑
i=0

diA
i +

n−1∑
i=1

ci−1,kA
i
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= −cn−1,kd0I +
n−1∑
i=1

(cn−1,kdi − ci−1,k)Ai =
n−1∑
i=0

ci,k+1A
i

for some ci,k+1 ∈ R, so by induction, An+k =
∑n−1

i=0 cikA
i for all k ∈ N.

By definition of matrix exponential we have

eAt =
∞∑
k=0

tk

k!
Ai =

n−1∑
k=0

tk

k!
Ak+

∞∑
k=0

tk+n

(k + n)!
Ak+n =

n−1∑
k=0

tk

k!
Ak+

∞∑
k=0

n−1∑
i=0

cikt
k+n

(k + n)!
Ai =

n−1∑
k=0

tk

k!
Ak+

n−1∑
i=0

∞∑
k=0

cikt
k+n

(k + n)!
Ai =

n−1∑
i=0

(
ti

i!
Ai +

∞∑
k=0

cikt
k+n

(k + n)!

)
Ai = αi(t)A

i

which was to be proven.

Question 3

(a) Recall that
Ẋ = AX +BU and Y = CX +DU

and taking the Laplace transform of this and assuming x(0) = 0 gives

sX̂ = AX̂ +BÛ and Ŷ = CX̂ +DÛ

which can be rearranged to give

Ŷ = (C(sI − A)−1B +D)Û .

Subbing values gives

H(s) =C(sI − A)−1B +D

=
[

1 −10
]([ s 0

0 s

]
−
[

0 2
−3 −4

])−1 [
0
2

]
+ 1

=
[

1 −10
]([ s −2

3 s+ 4

])−1 [
0
2

]
+ 1

=
1

s2 + 4s+ 6

[
1 −10

] [ s+ 4 2
−3 s

] [
0
2

]
+ 1

=
1

s2 + 4s+ 6

[
1 −10

] [ 4
2s

]
+ 1

=
4− 20s

s2 + 4s+ 6
+ 1

=
s2 − 16s+ 10

s2 + 4s+ 6
.
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(b) The impulse response is given by

Y (s) = H(s)U(s) =
s2 − 16s+ 10

s2 + 4s+ 6
· 1 = 1 +

−20(s+ 2) + 44

(s+ 2)2 +
√

2
2 .

Transforming back (using the laplace transform tables) gives:

y(t) = δ(t) + e−2t
(
−20 cos(

√
2t) + 22

√
2 sin(

√
2t)
)
.

This is the impulse response matrix.

(c) X has dimension n = 2 so the controlability matrix is

Con(A,B) = [B AB] =

[[
0
2

] [
0 2
−3 −4

] [
0
2

]]
=

[
0 4
2 −8

]
.

The determinant of this matrix is |Con(A,B)| = 0 · −8− 4 · 2 = −8, so Con(A,B) is full
rank, thus the system is controllable.

(d) Again, X has dimension n = 2 so the observability matrix is

Obs(A,B) =

[
C
CA

]
=

 [
1 −10

][
1 −10

] [ 0 2
−3 −4

]  =

[
1 −10
30 42

]
.

The determinant of this matrix is |Obs(A,B)| = 1 · 42 + 10 · 30 = 342, so Con(A,B) is
full rank, thus the system is observable.

(e) Let K =

[
k1
k2

]
. From lectures,

ė(t) = (A−KC)e(t) =

([
0 2
−3 −4

]
−
[
k1 −10k1
k2 −10k2

])
e(t) =

[
−k1 2 + 10k1
−3− k2 −4 + 10k2

]
e(t) = Qe(t).

We want a Q that has negative eigenvalues (so that the estimation error converges to 0)
and no imaginary part (so there is no oscillation). The characteristic equation for Q is
(k1+λ)(λ+4−10k2)+2(1+5k1)(3+k2) = λ2+(k1+4−10k2)λ+4k1−10k1k2+2(1+5k1)(3+

k2) so we have eigenvalues λ =
−(k1+4−10k2)±

√
(k1+4−10k2)2−4(4k1−10k1k2+2(1+5k1)(3+k2))

2
=

10k2−4−k1±
√
k21+100k22−88k2−20k1k2−8−128k1

2
. The larger eigenvalue was plotted and k1 = 1 and

k2 = −3 were chosen so that the larger eigenvalue was negative. This gave eigenvalues
of −35±

√
1089

2
= −1,−34. This observer should cause the error in estimation to go to 0.

This is demonstrated in the graphs below.
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(f) The following graphs compare the step response of x̂(t) and x(t) for initial conditions of
X0 = (0, 0).

1 2 3 4 5
t

0.1

0.2

0.3

0.4

0.5

0.6

x1
Step response, First Co-ordinate, Xo=H0,0L

0.5 1.0 1.5 2.0 2.5 3.0
t

0.05

0.10

0.15

0.20

0.25

0.30

0.35

x2
Step response, Second Co-ordinate, Xo=H0,0L

And these graphs compare the impulse response of x̂(t) and x(t) for the same initial
conditions.

1 2 3 4 5 6
t

-1.0

-0.5

0.5

x1
Impulse response, First Co-ordinate, Xo=H0,0L

1 2 3 4
t

1

2

3

4

5

x2
Impulse response, Second Co-ordinate, Xo=H0,0L

The following graphs compare the step response of x̂(t) and x(t) for initial conditions of
X0 = (1, 1).

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

1.2

x1
Step response, First Co-ordinate, Xo=H1,1L

0.5 1.0 1.5 2.0 2.5 3.0
t

-0.2

0.2

0.4

0.6

0.8

1.0

x2
Step response, Second Co-ordinate, Xo=H1,1L
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And these graphs compare the impulse response of x̂(t) and x(t) for the same initial
conditions.

1 2 3 4 5
t

-1.0

-0.5

0.5

1.0

1.5

x1
Impulse response, First Co-ordinate, Xo=H1,1L

0.5 1.0 1.5 2.0 2.5 3.0
t

-1

1

2

3

4

5

x2
Impulse response, Second Co-ordinate, Xo=H1,1L

Question 4

(a) The eigenvalues of A are

c eigenvalues
0 16.353i −16.353i 1.8002i −1.8002i

375 −6.4143 + 14.750i −6.4143− 14.750i −0.33569 + 1.7993i −0.33569− 1.7993i
750 −12.766 + 8.1505i −12.766− 8.1505i −0.73427 + 1.7997i −0.73427− 1.7997i
1125 −32.835 −4.8820 −1.3913 + 1.8629i −1.3914− 1.8629i

(b) The solution to this equation is

x(t) = e(A+FB)tX0 +

∫ t

0

eA(t−s)Bu(t) ds =
1

6

∫ t

0

eA(t−s)B sin(
2πvt

20
) ds .

Solving this and plotting on Mathematica gives the following graphs. First, four graphs
(one for each co-ordinate of x(t)) showing the response to 1

6
sin(πvt

10
) with v = 9 for

different dampening constants c.

2 4 6 8 10
t

-0.3

-0.2

-0.1

0.1

0.2

x1
First Co-ordinate, v=9

2 4 6 8 10
t

-0.6

-0.4

-0.2

0.2

0.4

0.6

x2
Second Co-ordinate, v=9
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1 2 3 4 5
t

-0.2

-0.1

0.1

0.2

x3
Third Co-ordinate, v=9

1 2 3 4 5
t

-0.5

0.5

x4
Fourth Co-ordinate, v=9

Next are a set of four graphs for v = 18.

2 4 6 8 10
t

-0.10

-0.05

0.05

0.10

x1
First Co-ordinate, v=18

2 4 6 8 10
t

-0.4

-0.2

0.2

0.4

x2
Second Co-ordinate, v=18

1 2 3 4 5
t

-0.2

-0.1

0.1

0.2

x3
Third Co-ordinate, v=18

1 2 3 4 5
t

-1.5

-1.0

-0.5

0.5

1.0

1.5

x4
Fourth Co-ordinate, v=18

Now the same thing for v = 27.
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2 4 6 8 10
t
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0.04
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x1
First Co-ordinate, v=27

2 4 6 8 10
t

-0.4

-0.2

0.2

x2
Second Co-ordinate, v=27

1 2 3 4 5
t
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-0.2

-0.1

0.1

0.2

x3
Third Co-ordinate, v=27
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3

x4
Fourth Co-ordinate, v=27

And finally for v = 36.
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First Co-ordinate, v=36
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x2
Second Co-ordinate, v=36
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1 2 3 4 5
t

-0.4

-0.2

0.2

0.4

x3
Third Co-ordinate, v=36

1 2 3 4 5
t

-6

-4

-2

2

4

6

x4
Fourth Co-ordinate, v=36

From inspecting individual graphs, the variying the dampening constant does not neces-
sarily reduce the magnitude of the oscilations in each co-ordinate. However, increasing
the dampening constant causes the oscilations to become more regular. When the damp-
ening constant is 0, the graph has multiple local maxima, which are not global maxima.
This means the system is very sensitive to the changing input and changes direction
frequenctly. However as the damping constant increases, the oscilation becomes more
sinusodal, having local maxima and minima which appear also to be global maxima and
minima.

By inspecting the graphs as a series, the main effect of increasing the velocity v is to
increase the frequency of oscilations in the graph. This is expected, as the faster the car
travels, the more frequently the system must respond.

Question 5

We want the system to be stable but not assymptotically stable, so choose poles at ±i and a
double pole at −1. This gives a desired character equation of s4 + d3s

3 + d2s
2 + d1s

1 + d0 =
1 + 2s+ 2s2 + 2s3 + s4. The control matrix of this system is

Con(A,B) = [B,AB,A2B,A3B] =


0 1

M
−F
M2

F 2

M3

1
M

−F
M2

F 2

M3
−F 3

M4

0 0 0 −g
LM

0 0 −g
LM

Fg
LM2

 .
This has inverse 

F M 0 0
M 0 0 −FL

g

0 0 −FL
g

−−LM
g

0 0 −LM
g

0


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so define q =
[
0, 0, −LM

g
, 0
]
. From classes, we showed that the appropriate co-ordinate

trasformation is

P =


q
qA
qA2

qA3

 =


0 0 −LM

g
0

0 0 0 −LM
g

M 0 −M 0
0 M 0 −M

 .
Now we can calculate

AC = PAP−1 =


0 1 0 0
0 0 1 0
0 0 0 1

0 Fg
LM

g
L

−F
M

 ,
and thus, if FC = [f0, f1, f2, f3]

ACF = AC + [0, 0, 0, 1]TFC =


0 1 0 0
0 0 1 0
0 0 0 1

−(0− f0) −
(
− Fg
LM
− f1

)
−
(
− g
L
− f2

)
−
(
F
M
− f3

)
 .

We want
[
−(0− f0),−

(
− Fg
LM
− f1

)
,−
(
− g
L
− f2

)
,−
(
F
M
− f3

)]
= [−d0,−d1,−d2,−d3].

Thus, we choose

FC = [−1,
−Fg
LM

− 2,
−g
L
− 2,

F

M
− 2].

Transforming co-ordinates back gives

F = FcP =

[
−M(g + 2L)

L
, F − 2M,

(g + L)2M

gL
,
2(g + L)M

g

]
.

The system with feedback control is

Ẋ(t) = (A+BF )X +Bu(t),

so using mathematica we have

A+ FB =


0 1 0 0

−g+2L
L

− F
M

+ F−2M
M

(g+L)2

gL
2(g+L)

g

0 0 0 1
− g
L

0 g
L

0

 .
The solution to this equation is

X(t) = e(A+FB)tX0 +

∫ t

0

e(A+FB)(t−s)Bu(t) ds .



Mitch Gooding 11

From the model, s(t) = x1(t) and x3(t) = s(t) + Lφ(t), which means φ(t) = x3(t)−x1(t)
L

.
Numbers have been substituted from here to generate the graphs. I have taken g = F =
M = 1 and L = 2. I will look at 3 initial conditions, Xa

0 = [0, 0, 0, 0]T which corresponds to
s(0) = 0, ṡ(0) = 0, φ(0) = 0 and φ̇(0) = 0, Xb

0 = [0, 1, 0, 1]T which corresponds to s(0) = 0,
ṡ(0) = 1, φ(0) = 0 and φ̇(0) = 0 and Xc

0 = [0, 1, 0, 3]T which corresponds to s(0) = 0,
ṡ(0) = 1, φ(0) = 0 and φ̇(0) = 1, and I will look at the impulse, step and periodic responses
(u(t) = sin(t)) of these systems. First the impulse responses:

2 4 6 8 10
t

-10

-5

5

10

y
Impulse response, sHtL

2 4 6 8 10
t

-2

-1

1

2

y
Impulse response, phiHtL

These are the step responses:

2 4 6 8 10
t

-10

-5

5

10

y
Step response, sHtL

2 4 6 8 10
t

-2

-1

1

2

y
Step response, phiHtL

And these are the periodic responces:

2 4 6 8 10
t

-10

-5

5

10

y
Frequency response, sHtL

2 4 6 8 10
t

-3

-2

-1

1

2

3

y
Frequency response, phiHtL



Mitch Gooding 12

These graphs look very similar, but careful inspection will reveal that they are not identical.
This would be expected, since the system is being controlled so that the output behaves in
a very particular way (the poles of the system are in the same positions).

Question 6

Let A ∈ Rn×n, C ∈ Rp×n. First, assume (A,C) is observable. Then there exists some T such
that if for two initial conditions of the system x0 and x̄0,

(y(t) =)CeAtx0 +

∫ t

0

et−sBu(s) ds = CeAtx̄0 +

∫ t

0

et−sBu(s) ds (= ȳ)

for all t ∈ [0, T ], then x0 = x̄0. Thus, taking u(t) = 0 for all t ∈ [0, T ] and x̄0 = 0, then if
y(t) = CeAtx0 = 0 for all t ∈ [0, T ], then x0 = 0. By Question 2 we have

CeAtx0 =
n−1∑
i=0

αi(t)CA
ix0,

so if
∑n−1

i=0 αi(t)CA
ix0 = 0 for all t ∈ [0, T ], then x0 = 0.

Now assume Obs(A,C) does not have full rank. Then there exists nonzero a ∈ Rn such
that Obs(A,C)a = 0np×1, which implies CAia = 0p×1 for all i ∈ [0, . . . , n − 1. But then∑n−1

i=0 αi(t)CA
ia =

∑n−1
i=0 αi(t)0p×1 = 0p×1, so by the above reasoning, a = 0, which is a

contradiction, as we assumed a 6= 0. So Obs(A,C) must have full rank. Next, assume

Obs(A,C) has full rank, and assume we know y(t) and u(t) for all t ∈ [0, T ]. Rearranging
and integrating y(t) = CeAtx0 +

∫ t
0
et−sBu(s) ds over the known time and multiplying by

eA
′tC ′ gives ∫ T

0

eA
′tC ′CeAt dt x0 =

∫ T

0

eA
′tC ′y(t)− eA′tC ′

∫ t

0

et−sBu(s) ds dt .

To show (A,C) is observable, we just need to show
∫ T
0
eA
′tC ′CeAt dt is invertable, as if that

is true, we can calculate x0 by

x0 =

(∫ T

0

eA
′tC ′CeAt dt

)−1 ∫ T

0

eA
′tC ′y(t)− eA′tC ′

∫ t

0

et−sBu(s) ds dt .

For a contradiction, assume there exists nonzero a ∈ Rn such that
∫ T
0
eA
′tC ′CeAt dt a = 0

and define b(t) = CeAta ∈ Rp. Then

0 =

∫ T

0

a′eA
′tC ′CeAta dt =

∫ T

0

b(t)′b(t) dt =

∫ T

0

‖b(t)‖2 dt .
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For this integral to be 0, b(t) = CeAta must be 0 for all t ∈ [0, T ]. Thus differentiating b(t)
n− 1 times and evaluating at t = 0 gives n equations

Ca = 0

CAa = 0

. . .

CAn−1a = 0.

Writing this in one matrix equation gives
C
CA
CA2

. . .
CAn−1

 a = Obs(A,C)a = 0.

But Obs(A,C) has full rank, so this is only true if a = 0. We have a contradiction, so∫ T
0
eA
′tC ′CeAt dt a is invertable, and thus (A,C) is observable.


