MATH4406 Homework 4

Mitch Gooding
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Question 1

Method 1

Fortunately, A is already in the controller form, i.e A = A¢c and P = [, for y; = 1 and
po = 3. This means o1 = p; = 1 and 09 = g + pe = 4. The matrices A, and B,, are then
the 1% and 4*" rows of A¢ and B¢, so

01 0 0
Am—[11—34}

10
o=l 1

If we want the system to have eigenvalues at —1 + 14, —2 + ¢, then we want the characteristic
equation of the system to be ((s + 1)+ 1)((s +2)* + 1) = 10 + 18s + 15s* + 65> + s*. A
matrix with this as a characteristic equations is

and

o 1 0 0
o 0 1 0
Adi=1"09 o o 1
—-10 —18 —15 —6
Thus,
o 1 0 0
Adm‘{—m —~18 —15 —6}

We have that Fo = B (Agm — Am), 50

p_p [0 (fo 1 0 o]l _ for o o]\_[O0 0 o
e o1 ~10 —18 —15 —6 11 -3 4|) | -11 -19 —12

This is the desired feedback control. to verify this,

01 0 0 10
00 1 0 00([ 0 0 0 0

A+BF_0001+00{—11 —19 —12 —10}
11 -3 4 0 1

0
—10 |~
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01 0 0 0o 0 0 0 0 1 0 0
oo v of O 0 0 0 |_| 0 0 L0 |,
100 0 1 0 0 0 o | | o 0 o 1 |4

11 -3 4 —11 =19 —12 —10 —10 —18 —15 —6

which has the desired eigenvalues.

Method 2

For each of the desired eigenvalues, we need to find the null space of the matrices [A\;] — A, B].
Using Mathematica, we have

4—51  57+621
1+91  4-51
—-10-81 149 | [ M,
18—21 —10—8I _[ ]
0 123
123 0

(=141 —A,B]=

and -
—11 — 811 2661 + 13711

103+ 1511 —11 — 811
—357 - 1991 103 +1511 | [ M
013 +411  —357—1991 | — { } ’
0 6632
6682 0

[(—1+4)] — A, B] =

[(_1_¢)1—A,B]=[_M§3]:{—]\gi‘]

. M, M;
comaram= % ][]
We have that the eigenvectors satisty v; = M;a;, so each eigenvector is linearly dependent
on M;. Thus, we will choose eigenvectors from the columns of the M;, remembering that
vy = v} and vy = v;. We will simply choose a; = [1,0]” for all 4 and which gives

and

and

4 —51 4+ 51 —11 - 817 —11+ 817
1+91 1-91 10341517 103 — 15171
—10—-81 —-10+481 —357—1991 —357+ 1991
18 =21 18421 913 + 411 913 — 4171

V:

This means
0 0 0 0

D=IDial =1 _j95 193 _ges2 —6682 |-
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Finally, we have that

0 0 0 0

— -1 _
=DV = -11 -19 —-12 -10

This agrees with the previous method.

Method 3
This is the direct method. Let
F:[fl fa f3 f4}
s fo fr fs ]’
01 0 O fii ' fo f3 Ja fi fo+1 f3 fa
00 1 0 O 0 0 0 0 0 1 0
A+BE=14"10 0 1]T]0o 0 0 0ol|~| o 0 0 1
11 -3 4 s fe fr [s fs+1 fe+1 fr—3 fs+4
Now,
det(A + BF — sI)
—S 1 0
:(fl—S) 0 —S 1
foet+1l fr—=3 fes+4—s
0 1 0 0 -5 0
—(fo+1)| 0 —5 1 +fs| 0 0 1
fs+1 fr—=3 fs+4—s fs+1 fo+1 fas+4—s
0 -8 1
—f4 0 0 —S
fs+1 fo+1 fr—3
—S 1 0 1
—(fl—s)(—s fr=3 fs+d—s| | fo+1 f8+4—8)
0 1 0 1 0 —5
1 _
{2+ 1) fs+1 fas+4—s /3 fs+1 fes+4—s sh fs+1 fo+1

=(fi—s)(=s(=s(fs+4—5)=(fr =3)) +(fc +1))

—(fo+D(fs+1) —sfs(fs +1) — s> fu(f5 + 1)

=(fs+4) /1> =’ (fs+4) — fis* + 5" +sfi(fr —3) — *(fr = 3) — fu(fs + 1)

—s(fo+1)— (o + D)(fs+1) —sfs(fs +1) —s*fu(fs + 1)

=—filfe+1) = (fo+ (s +1) +s(fi(fr—=3) = (fs+1) = fas(fs +1))

+((fs+4)f1—(fr=3) = fu(fs+ 1)+ °(=(fs +4) — f1) + s*
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Equating coefficients of this equation with the characteristic equation of a matrix with
the desired eigenvalues (10 4 18s 4 15s? + 6s® 4 s*) gives 4 equations,

10=-filfe+1)—(fa+1)(fs +1)

18= fi(fr—3)—(fe+1)— fs(fs +1)
15=(fs+4)fi = (fr =3) = fufs +1)

6=—(fs+4)—hfi
We have 8 unknowns and only 4 equations. Initially, choose f; = 0. Then by the 4th
equation, fg = —10. The remaining equations become:

—10=(fo+1)(fs +1)

19=—fo — fa(fs +1)
—12 = fr+ fa(fs + 1)

We still have more equations than unknowns, so choose fo = 0. The first of these equations
gives fs5 = —11 and the remaining equations become:

19 =—fs+ 103

—12=f7 —10f4
These last two equations have no common unknowns, and we have two more equations than
unknowns, so choose f3 = f; = 0. The first of these equations gives fg = —19 and the
remaining equation gives f; = —12. Thus, we have

Is fe fr [s —11 =19 —12 -10

as a solution. This agrees with the previous results.

F:|:f1 2 f3 f4]:[0 0 0 0

Question 2

Define Z(t) = e*z(t) and @(t) = e**u(t). Then the performance index becomes

J(u) = / #'Qz + o' Ru dx
0

and the system becomes

T = ez (t) 4+ i (t) = aea(t) + e Az(t) + e Bu(t) = e (al + A)z(t) + ¢** Bu(t)
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— (al + A)E(t) + Ba(t) = AZ(t) + Ba(t)

and
g(t) = e*y(t) = e*Cult) = Cu(t).

Now, this system with transformed variables is now a system where () and R are constant, so
we may apply the results from the textbook. In particular we have that the optimal control
for this system is

"= F*i =R 'BTP, x (t)

where P’ is the solution to the algebraic Riccati equation

ATP,+ PPA— PBR'B"P.+Q =0.

This implies
eatu* — eatF*u — —R_lBTPC*fL‘(t)Gat

and as e for all t € R, we can divide through by this and we have
u* = F*u=—R 'BTPrz(t).
Furthermore, the Riccati equation can be simplified to give
(al + A)'P.+ P.(al + A) — P.BR'B"P.+Q =0

which implies
2P, + ATP,+ P.A— P.BR'BTP.+Q = 0.
Clearly, the solution P’ to this equation is a constant matrix, as no term in the Riccati equa-

tion is a function of time. This means that our feedback control law F*u(t) = —R™*BT P*x(t)
is a fixed control law.

Question 3

a) First notice that z(k +1) = Alz(k) + Zi‘;o A'Bu(k +1) + A"Eq(k +1). We can prove this
with induction. For i = 1 we have x(k + 1) = Ax(k) + Bu(k) + Eq(k) as expected, so
assume z(k+1) = Ala(k) + Y2120 A'Bu(k+14) + A'Eq(k+1) is true for [ = j, and consider
[ = j+1. Then

x(k+j+1)=Ax(k+j)+ Bulk+j)+ Eq(k + j)

= A (Aja:(k) + jz A'Bu(k +1i) + A'Eq(k + i)) + Bu(k + j) + Eq(k + j)

=0



Mitch Gooding 6

jH1-1
= AM(k)+ > A'Bu(k +1) + A'Eq(k + i)
i=0
which finished the proof by induction. We then have that

-1
y(k+1) = CA'w(k) + >  CA'Bu(k +1i) + CA'Eq(k +1),

=0

so for y(k+1) to be not effected by ¢, we must have 0 = Zé;é CA'E. For no y(k) to be not
effected by ¢ for any time until y(k +1), then we must have CA'E = 0 for all 7 € [0, ..., I].
By the Cayley Hamilton Theorem, for any [ > n, CA'E is a linear combination of CA'E
fori € [0,...,0—1]. Thus, y will not be effected by ¢ for all time if it is not effected at any
time step from k until k£ +n — 1, which will happen if CA'E = 0 for all ¢ € [0, ...,n — 1].
If we arrange these equations into one matrix equation we have

CE
0= : — Obs(A, C)E.
CA'E

Thus, the effects of ¢ will be completely eliminated if Obs(A, C)E = 0.

For A = [ } 1 } and C' = [1,1], we have Obs(A,C) = {; é ] As q € R", E € R¥*",
However, Obs(A, C)E = 0y, implies Obs(A, C)E; = 0351, where E; is the i column
of E. This means that each column of F must be a scalar multiple of the eigenvector
of Obs(A, C) for the eigenvalue 0, which is the vector [—1,1]7. So E is characterised by

[#7, —2T]T, where z is any element in R".

The z-transform of x(k) is
2X(x) = AX(2) + BU(2) + EQ(z).
Rearranging for X (z) gives

X(2) = (BU(2) + EQ(2))(z] — A)!

z
z—1

and recalling that the z-transform of a step function is Q(z) = gives

X(2)=(BU()(z—1)+ Ez)(z — 1)1zl — A)~*.

Thus,
Y(2) = C(BU(2)(z — 1) + Ez)(z — 1) }(2I — A)~.
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Now, if ¢ was absent, then the output would be Y (2) = C(BU(2))(zI — A)~!. We want
the error introduced by ¢ to go to 0 asymptotically, so consider

Y(2)-Y(2) = C(BU(2)(2—1)+Ez2)(z—1)"H2I-A) ' ~C(BU(2)(2—1))(2—1) " (21— A)!
=COFEz(z — 1) (2 — A%

By the final value theorem for the z-transform, if the eigenvalues of A are have magnitude
strictly less than 1,

y(00) = (o) = lim(x — 1)(Y(2) ~ V(2))

= lim CEz(2] — A P=CEI - A"

Thus, if the eigenvalues of A are strictly less than 1, there will be a constant asymptotic
error of CE(I — A)~L.

Question 4

This example aims to find the Kalman decomposition of the system described by

t=Ar+ Bu and y=Cx

with
0 -1 1
A=11 =2 1 ,
0 1 -1
10
B=|11],
1 2
and
C =0,1,0].

First, we must find the controllability and observability matrices for this system. n = 3,
so we have that

10
Con(A,B) = [B,AB,A*B] = | 1 1
1 2

We also have
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n, is the dimension of the observable subspace R, so we have
n, = rank(Obs) = 2

and thus the dimension of the uncontrollable subspace R; is n; = n — n, = 1. The null
space of Obs(A, B) is [1,0, —1], which is the unobservable subspace. n, is the dimension of
the controllable subspace R, so we have

n, = rank(Con) = 2.

The null space of the controllability matrix is [1, —2, 1], which means the two vectors mutu-
ally perpendicular to this form R,. In particular, [1,0, —1] is perpendicular to [1,—2, 1], so
we choose the vectors to describe R, as R, = {[1,0,—1],[1,1,1]}. Thus, it is clear what the
observable and controllable subspace is, [1, 1, 1], the dimension of which is n,;. Also, the only
vector in the unobservable and uncontrollable subspace is the 0 vector, as the unobservable
subspace is a subset of the controllable subspace. This means Asy, Ay3, A4y have dimensions
of 0, i.e. they do not exist.

Now, @ is defined as

Q = [Ula .. -UnraQNaﬁlv s 76710*7%6]

where the first n, — n,; = 1 columns are the basis of the controllable and observable space,
[1,1,1], the next n; = 1 columns are the basis of the controllable but unobservable subspace
(1,0, —1], the last n, — n,; = 0 vectors are the basis of the unobservable and uncontrollable
subspace (which is empty in this question). @y is chosen so that ) is nonsingular. In this
example @ was chosen to be [0, 0, 1], which gave

1 1 0
Q=11 0 o0
1 1

-1
Q is non singular, as det Q = —1(1-1—0-1) = —1. From here we can calculate
) 0 0 1 A 0 Ags
A=Q'AQ=|0 —1 0 | =] Ay Ay Ay
0 0 =2 0 0 Ass
) 1 1 B
B=Q'BQ=|0 -1 |=| B,
0 0 0
and

C=Q7'CQ=1[1,0,0] = [C},0,C5].
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Thus, the matrix A;; = 0, which corresponds to the eigenvalue 0, is controllable and
observable. We also have (A, B,), where

Ao =
{ Agr A }

_| B
b= |
is controllable, which implies the matrix Ass = —1, which corresponds to the eigenvalue -1,
is controllable but unobservable. Finally, we also have (A,,C,), where

Ao _ |: All A13 :|

and

and
C(O = [017 03]
is observable, which implies the matrix Asz3 = —2, which corresponds to the eigenvalue -2,

is observable but uncontrollable. As pointed out above, there are no eigenvalues which are
neither controllable nor observable.

Question 5

a) Before proving this, not that if v is a left eigenvector of A with eigenvalue A, then v is a
left eigenvector of A with eigenvalue e*”". To see this calculate

B 9] 1 00 1 ) 1

_ AT § m __ E : mm § mm AT

UA = ve =" %<AT) = %UA T" = %U)\ T = ve™.
m=0 m=0 m=0

The same holds for right eigenvectors.

Another theorem that will be used in this proof is one of the PHB tests, specifically that
rank([A\] — A, B]) <n

for an eigenvalue A of A if and only if (A, B) is uncontrollable, and

rank( ) <n

for an eigenvalue A of A if and only if (A, C) is unobservable.

el — A
C
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First, we prove that if S(\; — A;) = 2 for any eigenvalues R(\; — \;) = 0, then (A, B) is
uncontrollable and A, B is unobservable. If the antecedent is true, then let \; = \; + %
and consider the (left) eigenvectors v; and v; of A. By the above argument, v; and v;
are an eigenvectors of A with eigenvalues e*” and eM”. However, due to the fact that
e? = e*t?ki for any 2z € C and k € Z, eMT = eNT | i.e. the eigenvalue eM” has arithmetic
multiplicity of at least 2. But this means 7] — A has 0 as an eigenvalue with multi-
plicity of at least 2, so rank(e*?I — A) < n — 2. Adding another column to this matrix
can increase the rank by no more than 1, so rank([e*T] — A, B]) < n — 1 < n. Thus, by

the PHB test, (A, B) is uncontrollable.

Similarly if v; and v; are eigenvectors of A, then by the above argument, v; and v; are an
eigenvectors of A with eigenvalues eM” and e*”. Again, the eigenvalue e’ has arith-
metic multiplicity of at least 2 and rank(e’TT — A) < n — 2. Adding another row to this
matrix can increase the rank by no more than 1, so rank([e¥T] — A, B]) <n—1 < n.
Thus, again, by the PHB test, (A4, C) is unobservable.

Now assume if S(\; — ;) # ZE for any eigenvalues such that R(\; — ;) = 0. We
know that (A, B) is controllable, so by the PHB test, for every eigenvalue \; of A,
rank([A\;/ — A, B]) = n. However, as J\; is an eigenvector, rank(\;/ — A) < n, and as
adding another column to this matrix can increase the rank by no more than 1, then
rank(\;] — A) = n — 1. Thus, the multiplicity of every eigenvalue of A can be no more
than 1, i.e. every eigenvalue of A is unique.

Furthermore, B is linearly independent of A\;I — A for each ¢, which means for every n —1
set of eigenvectors of A, B is linearly independent of that set. Asv;(A\]—A) = \vi—\jv;,
the eigenvectors of \;I — A are the eigenvectors of A, however they now correspond to
the eigenvalues \; — \;. As A and A have the same eigenvectors, for every n — 1 set of
eigenvectors of A, B is linearly independent of that set. Thus we may define a; # 0 such

that
n
B = Z ;U5
i=1
Also, as fOT eA™ dt is a non singular matrix for 7 > 0 with the same eigenvectors as A,

then T’ n T n n
B = / AT dt B = Zai/ AT dt v; = Z,uiaivi = Zﬂivi
0 i=1 0 i=1 i=1

where p; are the eigenvalues of fOT eA™ dt . Note that p;o; = 3; # 0, as a; # 0 and j; # 0,
as fOT eA™ dt is nonsingular. Thus, B is also has the property that for every n — 1 set of
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eigenvectors of A, B is linearly independent of that set.

Now, by assumption, whenever R(\; — A;) = 0, then S(\; — A;) %, so there are no
eigenvalues of A such that \; = \; + % for any k € Z\ {0}, and hence for every pair of
eigenvalue such that i # j, eNT # eNT. Thus, every eigenvalue of A has multiplicity of
1. Thus, for every eigenvalue, rank(e*”I — A) = n — 1. Now, as B is has the property
that for every n — 1 set of eigenvectors of A, B is linearly independent of that set, then

for any eigenvalue,
rank([e*?] — A, B]) = rank(eM'] — A) + 1 =n.

As this holds for any eigenvalue, by the PHB test, (A, B) is controllable.

Similarly, we know that (A, C) is observable, so by the PHB test, for every eigenvalue \;

of A,
(FAI—A,)
rank =n.
C

However, as J\; is an eigenvector, rank(A\;/ — A) < n and as adding another column to this
matrix can increase the rank by no more than 1, then rank(\;/ — A) = n — 1. Thus, C is
linearly independent of \;I — A for each ¢, which means for every n — 1 set of eigenvectors
of A, C is linearly independent of that set. As v;(A\I —A) = \jvi— \;v;, the eigenvectors
of \;I — A are the eigenvectors of A, however they now correspond to the eigenvalues
A — ;. As A and A have the same eigenvectors, for every n — 1 set of eigenvectors of A,
C is linearly independent of that set. Furthermore, C' = C so the same property holds
for C

We still have that every eigenvalue of gl has multiplicity of 1. Thus, for every eigenvalue,
rank(eMTT — A) = n—1. Now, as C is has the property that for every n — 1 set of
eigenvectors of A, C' is linearly independent of that set, then for any eigenvalue,

([dI—A
rank
C

As this holds for any eigenvalue, by the PHB test, (A, C) is observable.

> = rank(eMTT — A) +1 =n.

First, note that the double integrator is exactly the system described in the first part of
this question, so the results of that part can be applied here. The eigenvalues of A in the

8 (1) :| are )\1 = )\2 = 0. Thus for any )\Z - )\j, §R()\z - )\J> =0

but (A — A;) = 0, which is not equal to 2 for any k € Z\ {0}. Thus, by the above

first case, where A = [
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theorem, (A, B) is controllable and (A, C') is observable for any 7' > 0.

0

-1 0
for any i, j € {1,2} we have that R(A\; — X\2) =0, but if i = j then J(\; — A;) = 0, which
again is not equal to Z for any k € Z\ {0}. However, if i # j then S(\; — \;) = £2.
Thus, by the above theorem, (A, B) is uncontrollable and (A, C) is unobservable for
T = km for any k € N.

In first case, where A = , the eigenvalues of A are \; =1 and Ay = —i. Again,



