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Question 1

Method 1

Fortunately, A is already in the controller form, i.e A = AC and P = I, for µ1 = 1 and
µ2 = 3. This means σ1 = µ1 = 1 and σ2 = µ1 + µ2 = 4. The matrices Am and Bm are then
the 1st and 4th rows of AC and BC , so

Am =

[
0 1 0 0
1 1 −3 4

]
and

Bm =

[
1 0
0 1

]
.

If we want the system to have eigenvalues at −1± i,−2± i, then we want the characteristic
equation of the system to be ((s + 1)2 + 1)((s + 2)2 + 1) = 10 + 18s + 15s2 + 6s3 + s4. A
matrix with this as a characteristic equations is

Ad =


0 1 0 0
0 0 1 0
0 0 0 1
−10 −18 −15 −6

 .
Thus,

Adm =

[
0 1 0 0
−10 −18 −15 −6

]
We have that FC = B−1

m (Adm − Am), so

F = FC =

[
1 0
0 1

]−1([
0 1 0 0
−10 −18 −15 −6

]
−
[

0 1 0 0
1 1 −3 4

])
=

[
0 0 0 0
−11 −19 −12 −10

]
.

This is the desired feedback control. to verify this,

A+BF =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 −3 4

+


1 0
0 0
0 0
0 1

[ 0 0 0 0
−11 −19 −12 −10

]

1
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=


0 1 0 0
0 0 1 0
0 0 0 1
1 1 −3 4

+


0 0 0 0
0 0 0 0
0 0 0 0
−11 −19 −12 −10

 =


0 1 0 0
0 0 1 0
0 0 0 1
−10 −18 −15 −6

 = Ad

which has the desired eigenvalues.

Method 2

For each of the desired eigenvalues, we need to find the null space of the matrices [λiI−A,B].
Using Mathematica, we have

[(−1 + i)I − A,B] =


4− 5I 57 + 62I
1 + 9I 4− 5I
−10− 8I 1 + 9I
18− 2I −10− 8I

0 123
123 0

 =

[
M1

−D1

]

and

[(−1 + i)I − A,B] =


−11− 81I 2661 + 1371I
103 + 151I −11− 81I
−357− 199I 103 + 151I

913 + 41I −357− 199I
0 6682

6682 0

 =

[
M2

−D2

]
,

and

[(−1− i)I − A,B] =

[
M3

−D3

]
=

[
M∗

1

−D∗1

]
and

[(−2− i)I − A,B] =

[
M4

−D4

]
=

[
M∗

2

−D∗2

]
.

We have that the eigenvectors satisfy vi = Miai, so each eigenvector is linearly dependent
on Mi. Thus, we will choose eigenvectors from the columns of the Mi, remembering that
v1 = v∗3 and v2 = v∗4. We will simply choose ai = [1, 0]T for all i and which gives

V =


4− 5I 4 + 5I −11− 81I −11 + 81I
1 + 9I 1− 9I 103 + 151I 103− 151I
−10− 8I −10 + 8I −357− 199I −357 + 199I
18− 2I 18 + 2I 913 + 41I 913− 41I

 .
This means

D = [Diai] =

[
0 0 0 0
−123 −123 −6682 −6682

]
.
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Finally, we have that

F = DV −1 =

[
0 0 0 0
−11 −19 −12 −10

]
.

This agrees with the previous method.

Method 3

This is the direct method. Let

F =

[
f1 f2 f3 f4

f5 f6 f7 f8

]
.

A+BF =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 −3 4

+


f1 f2 f3 f4

0 0 0 0
0 0 0 0
f5 f6 f7 f8

 =


f1 f2 + 1 f3 f4

0 0 1 0
0 0 0 1

f5 + 1 f6 + 1 f7 − 3 f8 + 4

 .
Now,

det(A+BF − sI)

=(f1 − s)

∣∣∣∣∣∣
−s 1 0
0 −s 1

f6 + 1 f7 − 3 f8 + 4− s

∣∣∣∣∣∣
− (f2 + 1)

∣∣∣∣∣∣
0 1 0
0 −s 1

f5 + 1 f7 − 3 f8 + 4− s

∣∣∣∣∣∣+ f3

∣∣∣∣∣∣
0 −s 0
0 0 1

f5 + 1 f6 + 1 f8 + 4− s

∣∣∣∣∣∣
− f4

∣∣∣∣∣∣
0 −s 1
0 0 −s

f5 + 1 f6 + 1 f7 − 3

∣∣∣∣∣∣
=(f1 − s)

(
−s
∣∣∣∣ −s 1
f7 − 3 f8 + 4− s

∣∣∣∣− ∣∣∣∣ 0 1
f6 + 1 f8 + 4− s

∣∣∣∣)
+ (f2 + 1)

∣∣∣∣ 0 1
f5 + 1 f8 + 4− s

∣∣∣∣+ sf3

∣∣∣∣ 0 1
f5 + 1 f8 + 4− s

∣∣∣∣− sf4

∣∣∣∣ 0 −s
f5 + 1 f6 + 1

∣∣∣∣
=(f1 − s) (−s(−s(f8 + 4− s)− (f7 − 3)) + (f6 + 1))

− (f2 + 1)(f5 + 1)− sf3(f5 + 1)− s2f4(f5 + 1)

=(f8 + 4)f1s
2 − s3(f8 + 4)− f1s

3 + s4 + sf1(f7 − 3)− s2(f7 − 3)− f1(f6 + 1)

− s(f6 + 1)− (f2 + 1)(f5 + 1)− sf3(f5 + 1)− s2f4(f5 + 1)

=− f1(f6 + 1)− (f2 + 1)(f5 + 1) + s(f1(f7 − 3)− (f6 + 1)− f3(f5 + 1))

+ s2((f8 + 4)f1 − (f7 − 3)− f4(f5 + 1)) + s3(−(f8 + 4)− f1) + s4
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Equating coefficients of this equation with the characteristic equation of a matrix with
the desired eigenvalues (10 + 18s+ 15s2 + 6s3 + s4) gives 4 equations,

10 = −f1(f6 + 1)− (f2 + 1)(f5 + 1)

18 = f1(f7 − 3)− (f6 + 1)− f3(f5 + 1)

15 = (f8 + 4)f1 − (f7 − 3)− f4(f5 + 1)

6 = −(f8 + 4)− f1

We have 8 unknowns and only 4 equations. Initially, choose f1 = 0. Then by the 4th
equation, f8 = −10. The remaining equations become:

−10 = (f2 + 1)(f5 + 1)

19 = −f6 − f3(f5 + 1)

−12 = f7 + f4(f5 + 1)

We still have more equations than unknowns, so choose f2 = 0. The first of these equations
gives f5 = −11 and the remaining equations become:

19 = −f6 + 10f3

−12 = f7 − 10f4

These last two equations have no common unknowns, and we have two more equations than
unknowns, so choose f3 = f4 = 0. The first of these equations gives f6 = −19 and the
remaining equation gives f7 = −12. Thus, we have

F =

[
f1 f2 f3 f4

f5 f6 f7 f8

]
=

[
0 0 0 0
−11 −19 −12 −10

]
as a solution. This agrees with the previous results.

Question 2

Define x̃(t) = eαtx(t) and ũ(t) = eαtu(t). Then the performance index becomes

J̃(u) =

∫ ∞
0

x̃TQx̃+ ũTRũ dx

and the system becomes

˙̃x = αeαtx(t) + eαtẋ(t) = αeαtx(t) + eαtAx(t) + eαtBu(t) = eαt(αI + A)x(t) + eαtBu(t)
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= (αI + A)x̃(t) +Bũ(t) = Ãx̃(t) +Bũ(t)

and
ỹ(t) = eαty(t) = eαtCu(t) = Cũ(t).

Now, this system with transformed variables is now a system where Q and R are constant, so
we may apply the results from the textbook. In particular we have that the optimal control
for this system is

ũ∗ = F ∗ũ = −R−1BTPc ∗ x̃(t)

where P ∗c is the solution to the algebraic Riccati equation

ÃTPc + PcÃ− PcBR−1BTPc +Q = 0.

This implies
eαtu∗ = eαtF ∗u = −R−1BTP ∗c x(t)eαt

and as eαt for all t ∈ R, we can divide through by this and we have

u∗ = F ∗u = −R−1BTP ∗c x(t).

Furthermore, the Riccati equation can be simplified to give

(αI + A)TPc + Pc(αI + A)− PcBR−1BTPc +Q = 0

which implies
2αPc + ATPc + PcA− PcBR−1BTPc +Q = 0.

Clearly, the solution P ∗c to this equation is a constant matrix, as no term in the Riccati equa-
tion is a function of time. This means that our feedback control law F ∗u(t) = −R−1BTP ∗c x(t)
is a fixed control law.

Question 3

a) First notice that x(k+ l) = Alx(k) +
∑l−1

i=0A
iBu(k+ i) +AiEq(k+ i). We can prove this

with induction. For i = 1 we have x(k + 1) = Ax(k) + Bu(k) + Eq(k) as expected, so
assume x(k+ l) = Alx(k)+

∑l−1
i=0 A

iBu(k+ i)+AiEq(k+ i) is true for l = j, and consider
l = j + 1. Then

x(k + j + 1) = Ax(k + j) +Bu(k + j) + Eq(k + j)

= A

(
Ajx(k) +

j−1∑
i=0

AiBu(k + i) + AiEq(k + i)

)
+Bu(k + j) + Eq(k + j)
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= Aj+1x(k) +

j+1−1∑
i=0

AiBu(k + i) + AiEq(k + i)

which finished the proof by induction. We then have that

y(k + l) = CAlx(k) +
l−1∑
i=0

CAiBu(k + i) + CAiEq(k + i),

so for y(k+l) to be not effected by q, we must have 0 =
∑l−1

i=0CA
iE. For no y(k) to be not

effected by q for any time until y(k+ l), then we must have CAiE = 0 for all i ∈ [0, ..., l].
By the Cayley Hamilton Theorem, for any l ≥ n, CAlE is a linear combination of CAiE
for i ∈ [0, ..., l−1]. Thus, y will not be effected by q for all time if it is not effected at any
time step from k until k + n− 1, which will happen if CAiE = 0 for all i ∈ [0, ..., n− 1].
If we arrange these equations into one matrix equation we have

0 =

 CE
...

CAn−1E

 = Obs(A,C)E.

Thus, the effects of q will be completely eliminated if Obs(A,C)E = 0.

b) For A =

[
1 1
1 1

]
and C = [1, 1], we have Obs(A,C) =

[
1 1
2 2

]
. As q ∈ Rr, E ∈ R2×r.

However, Obs(A,C)E = 02×r0 implies Obs(A,C)Ei = 02×1, where Ei is the ith column
of E. This means that each column of E must be a scalar multiple of the eigenvector
of Obs(A,C) for the eigenvalue 0, which is the vector [−1, 1]T . So E is characterised by
[xT ,−xT ]T , where x is any element in Rr.

c) The z-transform of x(k) is

zX(x) = AX(z) +BU(z) + EQ(z).

Rearranging for X(z) gives

X(z) = (BU(z) + EQ(z))(zI − A)−1

and recalling that the z-transform of a step function is Q(z) = z
z−1

gives

X(z) = (BU(z)(z − 1) + Ez)(z − 1)−1(zI − A)−1.

Thus,
Y (z) = C(BU(z)(z − 1) + Ez)(z − 1)−1(zI − A)−1.
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Now, if q was absent, then the output would be Ȳ (z) = C(BU(z))(zI − A)−1. We want
the error introduced by q to go to 0 asymptotically, so consider

Y (z)−Ȳ (z) = C(BU(z)(z−1)+Ez)(z−1)−1(zI−A)−1−C(BU(z)(z−1))(z−1)−1(zI−A)−1

= CEz(z − 1)−1(zI − A)−1.

By the final value theorem for the z-transform, if the eigenvalues of A are have magnitude
strictly less than 1,

y(∞)− ȳ(∞) = lim
z→1

(z − 1)(Y (z)− Ȳ (z))

= lim
z→1

CEz(zI − A)−1 = CE(I − A)−1.

Thus, if the eigenvalues of A are strictly less than 1, there will be a constant asymptotic
error of CE(I − A)−1.

Question 4

This example aims to find the Kalman decomposition of the system described by

ẋ = Ax+Bu and y = Cx

with

A =

 0 −1 1
1 −2 1
0 1 −1

 ,
B =

 1 0
1 1
1 2

 ,
and

C = [0, 1, 0].

First, we must find the controllability and observability matrices for this system. n = 3,
so we have that

Con(A,B) = [B,AB,A2B] =

 1 0 0 1 0 −1
1 1 0 0 0 0
1 2 0 −1 0 1

 .
We also have

Obs(A,C) =

 C
CA
CA2

 =

 0 1 0
1 −2 1
−2 4 −2

 .
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no is the dimension of the observable subspace Ro so we have

no = rank(Obs) = 2

and thus the dimension of the uncontrollable subspace Rō is nō = n − no = 1. The null
space of Obs(A,B) is [1, 0,−1], which is the unobservable subspace. nr is the dimension of
the controllable subspace Rr so we have

nr = rank(Con) = 2.

The null space of the controllability matrix is [1,−2, 1], which means the two vectors mutu-
ally perpendicular to this form Rr. In particular, [1, 0,−1] is perpendicular to [1,−2, 1], so
we choose the vectors to describe Rr as Rr = {[1, 0,−1], [1, 1, 1]}. Thus, it is clear what the
observable and controllable subspace is, [1, 1, 1], the dimension of which is nrō. Also, the only
vector in the unobservable and uncontrollable subspace is the 0 vector, as the unobservable
subspace is a subset of the controllable subspace. This means A24, A43, A44 have dimensions
of 0, i.e. they do not exist.

Now, Q is defined as

Q = [v1, . . . vnr , QN , v̂1, . . . , v̂no−nrō ]

where the first nr − nrō = 1 columns are the basis of the controllable and observable space,
[1, 1, 1], the next nō = 1 columns are the basis of the controllable but unobservable subspace
[1, 0,−1], the last no − nrō = 0 vectors are the basis of the unobservable and uncontrollable
subspace (which is empty in this question). QN is chosen so that Q is nonsingular. In this
example QN was chosen to be [0, 0, 1], which gave

Q =

 1 1 0
1 0 0
1 −1 1

 .
Q is non singular, as detQ = −1(1 · 1− 0−̇1) = −1. From here we can calculate

Â = Q−1AQ =

 0 0 1
0 −1 0
0 0 −2

 =

 A11 0 A13

A21 A22 A23

0 0 A33



B̂ = Q−1BQ =

 1 1
0 −1
0 0

 =

 B1

B2

0


and

Ĉ = Q−1CQ = [1, 0, 0] = [C1, 0, C3].
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Thus, the matrix A11 = 0, which corresponds to the eigenvalue 0, is controllable and
observable. We also have (Ac, Bc), where

Ac =

[
A11 0
A21 A22

]
and

Bc =

[
B1

B2

]
is controllable, which implies the matrix A22 = −1, which corresponds to the eigenvalue -1,
is controllable but unobservable. Finally, we also have (Ao, Co), where

Ao =

[
A11 A13

0 A33

]
and

Co = [C1, C3]

is observable, which implies the matrix A33 = −2, which corresponds to the eigenvalue -2,
is observable but uncontrollable. As pointed out above, there are no eigenvalues which are
neither controllable nor observable.

Question 5

a) Before proving this, not that if v is a left eigenvector of A with eigenvalue λ, then v is a
left eigenvector of Ā with eigenvalue eλT . To see this calculate

vĀ = veAT = v
∞∑
m=0

1

m!
(AT )m =

∞∑
m=0

1

m!
vAmTm =

∞∑
m=0

1

m!
vλmTm = veλT .

The same holds for right eigenvectors.

Another theorem that will be used in this proof is one of the PHB tests, specifically that

rank([λI − A,B]) < n

for an eigenvalue λ of A if and only if (A,B) is uncontrollable, and

rank

([
cλI − A

C

])
< n

for an eigenvalue λ of A if and only if (A,C) is unobservable.
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First, we prove that if =(λi−λj) = 2πk
T

for any eigenvalues <(λi−λj) = 0, then (Ā, B̄) is
uncontrollable and Ā, B̄ is unobservable. If the antecedent is true, then let λi = λj + 2πk

T

and consider the (left) eigenvectors vi and vj of A. By the above argument, vi and vj
are an eigenvectors of Ā with eigenvalues eλiT and eλjT . However, due to the fact that
ez = ez+2kπi for any z ∈ C and k ∈ Z, eλiT = eλjT , i.e. the eigenvalue eλiT has arithmetic
multiplicity of at least 2. But this means eλiT I − Ā has 0 as an eigenvalue with multi-
plicity of at least 2, so rank(eλiT I − Ā) ≤ n− 2. Adding another column to this matrix
can increase the rank by no more than 1, so rank([eλiT I − Ā, B̄]) ≤ n− 1 < n. Thus, by
the PHB test, (Ā, B̄) is uncontrollable.

Similarly if vi and vj are eigenvectors of A, then by the above argument, vi and vj are an
eigenvectors of Ā with eigenvalues eλiT and eλjT . Again, the eigenvalue eλiT has arith-
metic multiplicity of at least 2 and rank(eλiT I − Ā) ≤ n− 2. Adding another row to this
matrix can increase the rank by no more than 1, so rank([eλiT I − Ā, B̄]) ≤ n − 1 < n.
Thus, again, by the PHB test, (Ā, C̄) is unobservable.

Now assume if =(λi − λj) 6= 2πk
T

for any eigenvalues such that <(λi − λj) = 0. We
know that (A,B) is controllable, so by the PHB test, for every eigenvalue λi of A,
rank([λiI − A,B]) = n. However, as λi is an eigenvector, rank(λiI − A) < n, and as
adding another column to this matrix can increase the rank by no more than 1, then
rank(λiI − A) = n − 1. Thus, the multiplicity of every eigenvalue of A can be no more
than 1, i.e. every eigenvalue of A is unique.

Furthermore, B is linearly independent of λiI−A for each i, which means for every n−1
set of eigenvectors of A, B is linearly independent of that set. As vj(λiI−A) = λivi−λjvj,
the eigenvectors of λiI − A are the eigenvectors of A, however they now correspond to
the eigenvalues λi − λj. As A and Ā have the same eigenvectors, for every n − 1 set of
eigenvectors of Ā, B is linearly independent of that set. Thus we may define αi 6= 0 such
that

B =
n∑
i=1

αivi.

Also, as
∫ T

0
eAτ dt is a non singular matrix for T > 0 with the same eigenvectors as A,

then

B̄ =

∫ T

0

eAτ dt B =
n∑
i=1

αi

∫ T

0

eAτ dt vi =
n∑
i=1

µiαivi =
n∑
i=1

βivi

where µi are the eigenvalues of
∫ T

0
eAτ dt . Note that µiαi = βi 6= 0, as αi 6= 0 and µi 6= 0,

as
∫ T

0
eAτ dt is nonsingular. Thus, B̄ is also has the property that for every n− 1 set of



Mitch Gooding 11

eigenvectors of Ā, B̄ is linearly independent of that set.

Now, by assumption, whenever <(λi − λj) = 0, then =(λi − λj) 6= 2πk
T

, so there are no
eigenvalues of A such that λi = λj + 2kπi

T
for any k ∈ Z \ {0}, and hence for every pair of

eigenvalue such that i 6= j, eλiT 6= eλjT . Thus, every eigenvalue of Ā has multiplicity of
1. Thus, for every eigenvalue, rank(eλiT I − A) = n − 1. Now, as B̄ is has the property
that for every n − 1 set of eigenvectors of Ā, B̄ is linearly independent of that set, then
for any eigenvalue,

rank([eλiT I − A,B]) = rank(eλiT I − A) + 1 = n.

As this holds for any eigenvalue, by the PHB test, (A,B) is controllable.

Similarly, we know that (A,C) is observable, so by the PHB test, for every eigenvalue λi
of A,

rank

([
cλI − A

C

])
= n.

However, as λi is an eigenvector, rank(λiI−A) < n and as adding another column to this
matrix can increase the rank by no more than 1, then rank(λiI −A) = n− 1. Thus, C is
linearly independent of λiI−A for each i, which means for every n−1 set of eigenvectors
of A, C is linearly independent of that set. As vj(λiI−A) = λivi−λjvj, the eigenvectors
of λiI − A are the eigenvectors of A, however they now correspond to the eigenvalues
λi− λj. As A and Ā have the same eigenvectors, for every n− 1 set of eigenvectors of Ā,
C is linearly independent of that set. Furthermore, C = C̄ so the same property holds
for C̄

We still have that every eigenvalue of Ā has multiplicity of 1. Thus, for every eigenvalue,
rank(eλiT I − A) = n − 1. Now, as C̄ is has the property that for every n − 1 set of
eigenvectors of Ā, C̄ is linearly independent of that set, then for any eigenvalue,

rank

([
cλI − A

C

])
= rank(eλiT I − A) + 1 = n.

As this holds for any eigenvalue, by the PHB test, (A,C) is observable.

b) First, note that the double integrator is exactly the system described in the first part of
this question, so the results of that part can be applied here. The eigenvalues of A in the

first case, where A =

[
0 1
0 0

]
are λ1 = λ2 = 0. Thus for any λi − λj, <(λi − λj) = 0

but =(λi − λj) = 0, which is not equal to 2πk
T

for any k ∈ Z \ {0}. Thus, by the above
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theorem, (A,B) is controllable and (A,C) is observable for any T > 0.

In first case, where A =

[
0 1
−1 0

]
, the eigenvalues of A are λ1 = i and λ2 = −i. Again,

for any i, j ∈ {1, 2} we have that <(λ1− λ2) = 0, but if i = j then =(λi− λj) = 0, which
again is not equal to 2πk

T
for any k ∈ Z \ {0}. However, if i 6= j then =(λi − λj) = ±2.

Thus, by the above theorem, (A,B) is uncontrollable and (A,C) is unobservable for
T = kπ for any k ∈ N.


