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Question 1

Give an example of a stable continuous system ẋ = Ax such that V (x) = xTx is not a Lyaponov
function.

We need to find a matrix A such that it’s eigenvalues have negative real parts (for stability) and
the function V̇ (x) > 0 for some x (i.e. not a Lyaponov function).

V̇ (x) = ẋTx+ xT ẋ

= (Ax)T x+ xTAx

= xT
(
AT +A

)
x

Thus we require AT +A to be NOT a negative definite matrix.

Choosing A =
(
−1 1
−4 −1

)
gives eigenvalues of λ = −1± 2i (thus stable) and

AT +A =
(
−1 −4
1 −1

)
+
(
−1 1
−4 −1

)
=
(
−2 −3
−3 −2

)

This is not a negative definite matrix. Consider the points x =
(

x1
−x1

)
(
x1 −x1

) (
−2 −3
−3 −2

)(
x1
−x1

)
=

(
x1 −x1

) (
x1
−x1

)
= 2x2

1

which is positive, thus V (x) is not a Lyaponov function.

Question 2

Give an example of a stable discrete system x (k + 1) = Ax (k) such that V (x) = xTx is not a
Lyaponov function.

We need to find a matrix A such that it’s eigenvalues are within the complex unit circle i.e.
‖λi‖ ≤ 1 ∀i (for stability) and the function V (Ax)− V (x) > 0 for some x (i.e. not a Lyaponov
function).

V (Ax)− V (x) = (Ax)T Ax− xTx

= xT
(
ATA− I

)
x

1



Thus we require ATA− I to be NOT a negative definite matrix.

Choosing A =
(

1
2 0
3 −1

2

)
gives eigenvalues of λ = ±1

2 (thus stable) and

ATA− I =
(

1
2 3
0 −1

2

)(
1
2 0
3 −1

2

)
−
(

1 0
0 1

)
=
(

33
4 −3

2
−3

2 −3
4

)

This is not a negative definite matrix. Consider the points x =
(
x1
x1

)
(
x1 x1

) (
33
4 −3

2
−3

2 −3
4

)(
x1
x1

)
=

(
27
4 x1 −9

4x1
) (

x1
x1

)

= 9
2x

2
1

which is positive, thus V (x) is not a Lyaponov function.

Question 3

Continuous
Consider the continuous system ẋ = Ax with V (x) = xTPx and P is a positive-definite matrix.

V̇ (x) = ẋTPx+ xTPẋ

= (Ax)T Px+ xTPAx

= xT
(
ATP + PA

)
x

For stability we need ATP +AP ≺ 0 or −
(
ATP + PA

)
� 0. From question 1 we have:

A =
(
−1 1
−4 −1

)
, P =

(
1 0
0 1

)

Which fails, however if we take P =
(

22 −3
−3 7

)
which is a symmetric matrix with positive

eigenvalues 29±3
√

29
2 ≈ (22.5, 6.4) and thus is positive definite, then:

ATP + PA =
(
−10 −25
25 −10

)
+
(
−10 25
−25 −10

)

=
(
−20 0

0 −20

)

xT
(
ATP + PA

)
x = −20x2

1 − 20x2
2

Which is Lyaponov stable.

Discrete
Consider the discrete system x (k + 1) = Ax (k) with V (x) = xTPx and P is a positive-definite
matrix.
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D [V (x (k))] = V (x (k + 1))− V (x (k))
= V (Ax (k))− V (x (k))
= (Ax (k))T PAx (k)− x (k)T Px (k)
= xT (k)

(
ATPA− P

)
x (k)

For stability we need D [V (x (k))] < 0 for all x 6= 0 thus we require ATPA − P ≺ 0 or
P −ATPA � 0. From question 2 we have:

A =
(

1
2 0
3 −1

2

)
, P =

(
1 0
0 1

)

Which fails, however if we take P =
(

164 −24
−24 20

)
which is a symmetric matrix with positive

eigenvalues 92± 24
√

10 ≈ (167.9, 16.1) and thus is positive definite, then:

ATPA− P =
(

1
2 3
0 −1

2

)(
164 −24
−24 20

)(
1
2 0
3 −1

2

)
−
(

164 −24
−24 20

)

=
(

10 48
12 −10

)(
1
2 0
3 −1

2

)
−
(

164 −24
−24 20

)

=
(

149 −24
−24 5

)
−
(

164 −24
−24 20

)

=
(
−15 0

0 −15

)

xT
(
ATPA− P

)
x = −15x2

1 − 15x2
2

Which is Lyaponov stable.

Question 4

Prove that if all eigenvalues of A have negative real part then there exists a matrix P such that
V (x) = xTPx is a Lyaponov function, for the system ẋ = Ax.

In order for V (x) to be a Lyaponov function we require a positive definite P such that ATP +
PA = −Q is negative definite (or negative semi-definite), ie. V̇ (x) = −xTQx ≤ 0

Thus given any suitable positive-definiteQ we need to solve the Lyaponov equation
(
ATP + PA = −Q

)
for P . Consider the definition:

P =
ˆ ∞

0
eAT tQeAt dt

which is well defined (since A has eigenvalues with negative real parts), and also symmetric and
positive-definite (from properties of Q). Then

ATP + PA =
ˆ ∞

0
AT eAT tQeAt + eAT tQeAtAdt

=
ˆ ∞

0

d

dt

[
eAT tQeAt

]
dt

=
[
eAT tQeAt

]∞
0

= −Q

3



Thus P exists and satisfies the Lyaponov equation. Note: to show P is positive definite we
consider

xTPx =
ˆ ∞

0
xT eAT tQeAtx dt

=
ˆ ∞

0

∥∥∥Q 1
2 eAtx

∥∥∥2
dt ≥ 0

Therefore if A has eigenvalues with negative real parts, then we can choose any positive-definite
Q, such that P exists and V (x) = xTPx is a Lyaponov function.

Question 5

A rabbit is running on the x-axis at a constant velocity R, a hound is chasing at a constant
velocity H > R, always facing directly towards (starting at any location). Show via Lyaponov
that the hound catches the rabbit.

Since constant velocity we have the rabbit

ẋr = R

ẏr = yr = 0

We have the hound moving closer (directly) towards the rabbit, at an equally scaled proportion
c ∈ R+ based on current position.

ẋh = −c (xh − xr)
ẏh = −c (yh − yr) = −cyh

Since the hound runs at constant speed H we have

ẋ2
h + ẏ2

h = H2

c2 (xh − xr)2 + c2y2
h = H2

c = H√
(xh − xr)2 + y2

h

For simplicity we relabel variables and take the rabbit as the origin x = xh − xr, y = yh

ẋ = ẋh − ẋr

= − H√
(xh − xr)2 + y2

h

(xh − xr)−R

= − H√
x2 + y2x−R

ẏ = ẏh

= − H√
x2 + y2 y

Now consider the Lyaponov function v (x, y) = x2 + y2 which is actually the distance squared
between the rabbit and the hound
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v̇ (x, y) = 2ẋx+ 2ẏy

= −2x2 H√
x2 + y2 − 2Rx− 2y2 H√

x2 + y2

= − 2H√
x2 + y2

(
x2 + y2

)
− 2Rx

= −2H
√
x2 + y2 − 2Rx

Clearly for y 6= 0 we have v̇ (0, y) < 0, and similarly for x > 0. When x < 0 we have

−2H
√
x2 + y2 − 2Rx ≤ −2H

√
x2 − 2Rx

= −2H |x|+ 2R |x|
= 2 |x| (R−H)
< 0

since H > R. Since v̇ (x, y) < 0 except for origin (0, 0) we know that v (x, y) (i.e. distance
squared) is a Lyaponov function, hence the equilibrium solution of 0 (hound catches rabbit) is
stable.
Thus we have shown that if H > R the hound always catches the rabbit (no matter where it
starts).

Question 6

Consider the fixed point iteration to find the square root: x2 = α with α > 0

x (k + 1) = f (x (k))
= x (k) + α− x2 (k)

Clearly if x (k) =
√
α we have x (k + 1) =

√
α + α − (

√
α)2 =

√
α which is a fixed point

equilibrium x̄.

We can consider x (k) and x (k + 1) in terms of x̄

x (k) = x̄− εk

x (k + 1) = x̄− εk+1

where convergence requires limk→∞ εk = 0

The range of values for convergence can be found by analyzing for small ε

x (k + 1) = f (x̄− εk)

x̄− εk+1 = f (x̄)− εkf
′ (x̄) + ε2

k

f ′′ (x̄)
2 + · · ·

= x̄− εk (1− 2x̄) +O
(
ε2

k

)
εk+1 = εk (1− 2x̄) +O

(
ε2

k

)
Thus we have approximately a geometric sequence
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εk ≈ (1− 2x̄)k−1 ε1

which has convergence when

0 < |1− 2x̄| < 1
0 < x̄ < 1

Thus 0 < α < 1 and 0 < x0 < 1.

Question 7

Consider a system with n queues and a policy to route to queue i with probability ui (
∑

i ui = 1).
We have arrival probability a, and departure probability di.

Xi (k + 1) = Xi (k) +Ai (k)−Di (k) + Li (k)

A (k) =



e1 w.p au1
...
en w.p aun

0 w.p 1− a

, Di (k) =
{

1 w.p di

0 w.p 1− di

, Li (k) = (Di − (Xi +Ai))+

a) Clearly a necessary (but not necessarily sufficient) condition of stability is that a <
∑n

i=1 di

otherwise our total arrivals will be more than our total departures and the queue will continue
to grow which is unstable.

b) For n = 2 find range of u’s that stabilizes the system based on the parameters a, d1 and d2.
We require au < d1 and a (1− u) < d2 thus we have

au+ aū < d1 + d2

au+ a− au < d1 + d2

a < d1 + d2

which is our necessary condition for stability. Then our values for u (rearranging au < d1 and
a (1− u) < d2) are

max
{

0, 1− d2
a

}
< u < min

{
1, d1

a

}
since 0 < u < 1

c) Consider “join shortest queue” derive Lyaponov function and show it is bounded by −ε with
ε > 0

Here we have

A (k) =


I{x1≤x2} w.p a
I{x1>x2}

0 w.p 1− a

Intuitively this is good for stability as it distributes work appropriately across the system.
Evaluating this with Foster-Lyaponov criterion gives:
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PV − V = E [V (X (t+ 1)) |X (t) = x]− V (x)

≤ E
[ 2∑

i=1

1
2 (Xi +Ai (t)−Di (t))2 −

(
x2

1 + x2
2

)
|X (t) = x

]

=
2∑

i=1
xiE [Ai (t)−Di (t) |X (t) = x] + 1

2E
[
(Ai (t)−Di (t))2 |X (t) = x

]

≤ 1 +
2∑

i=1
xiE [Ai (t)−Di (t) |X (t) = x]

= 1 +
(
x1
(
aI{x1≤x2} − d1

)
+ x2

(
aI{x1>x2} − d2

))
Consider when u = I{x1≤x2} then we have 1−u = I{x1>x2} and stability follows from our previous
question.

Since we have that x1I{x1≤x2} + x2I{x1>x2} ≤ ux1 + (1− u)x2 for any u ∈ [0, 1] we have

PV − V ≤ 1 + (x1 (au− d1) + x2 (a (1− u)− d2))
≤ −ε+ 1

When au < d1 and a (1− u) < d2. Note: we can ignore the bounded constant 1 in Foster-
Lyaponov.

Thus the ’join the shortest queue’ policy is just as good as random allocation in terms of stability.
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