# MATH4406 - Assignment 5 

Luke Marshall (41521209)
September 25, 2012

## Question 1

Give an example of a stable continuous system $\dot{x}=A x$ such that $V(x)=x^{T} x$ is not a Lyaponov function.

We need to find a matrix $A$ such that it's eigenvalues have negative real parts (for stability) and the function $\dot{V}(x)>0$ for some $x$ (i.e. not a Lyaponov function).

$$
\begin{aligned}
\dot{V}(x) & =\dot{x}^{T} x+x^{T} \dot{x} \\
& =(A x)^{T} x+x^{T} A x \\
& =x^{T}\left(A^{T}+A\right) x
\end{aligned}
$$

Thus we require $A^{T}+A$ to be NOT a negative definite matrix.
Choosing $A=\left(\begin{array}{cc}-1 & 1 \\ -4 & -1\end{array}\right)$ gives eigenvalues of $\lambda=-1 \pm 2 i$ (thus stable) and

$$
A^{T}+A=\left(\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right)+\left(\begin{array}{cc}
-1 & 1 \\
-4 & -1
\end{array}\right)=\left(\begin{array}{cc}
-2 & -3 \\
-3 & -2
\end{array}\right)
$$

This is not a negative definite matrix. Consider the points $x=\binom{x_{1}}{-x_{1}}$

$$
\begin{aligned}
\left(\begin{array}{ll}
x_{1} & -x_{1}
\end{array}\right)\left(\begin{array}{cc}
-2 & -3 \\
-3 & -2
\end{array}\right)\binom{x_{1}}{-x_{1}} & =\left(\begin{array}{ll}
x_{1} & -x_{1}
\end{array}\right)\binom{x_{1}}{-x_{1}} \\
& =2 x_{1}^{2}
\end{aligned}
$$

which is positive, thus $V(x)$ is not a Lyaponov function.

## Question 2

Give an example of a stable discrete system $x(k+1)=A x(k)$ such that $V(x)=x^{T} x$ is not a Lyaponov function.

We need to find a matrix $A$ such that it's eigenvalues are within the complex unit circle i.e. $\left\|\lambda_{i}\right\| \leq 1 \forall i$ (for stability) and the function $V(A x)-V(x)>0$ for some $x$ (i.e. not a Lyaponov function).

$$
\begin{aligned}
V(A x)-V(x) & =(A x)^{T} A x-x^{T} x \\
& =x^{T}\left(A^{T} A-I\right) x
\end{aligned}
$$

Thus we require $A^{T} A-I$ to be NOT a negative definite matrix.
Choosing $A=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 3 & -\frac{1}{2}\end{array}\right)$ gives eigenvalues of $\lambda= \pm \frac{1}{2}$ (thus stable) and

$$
A^{T} A-I=\left(\begin{array}{cc}
\frac{1}{2} & 3 \\
0 & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
3 & -\frac{1}{2}
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{33}{4} & -\frac{3}{2} \\
-\frac{3}{2} & -\frac{3}{4}
\end{array}\right)
$$

This is not a negative definite matrix. Consider the points $x=\binom{x_{1}}{x_{1}}$

$$
\begin{aligned}
\left(\begin{array}{ll}
x_{1} & x_{1}
\end{array}\right)\left(\begin{array}{rr}
\frac{33}{4} & -\frac{3}{2} \\
-\frac{3}{2} & -\frac{3}{4}
\end{array}\right)\binom{x_{1}}{x_{1}} & =\left(\begin{array}{ll}
\frac{27}{4} x_{1} & -\frac{9}{4} x_{1}
\end{array}\right)\binom{x_{1}}{x_{1}} \\
& =\frac{9}{2} x_{1}^{2}
\end{aligned}
$$

which is positive, thus $V(x)$ is not a Lyaponov function.

## Question 3

## Continuous

Consider the continuous system $\dot{x}=A x$ with $V(x)=x^{T} P x$ and $P$ is a positive-definite matrix.

$$
\begin{aligned}
\dot{V}(x) & =\dot{x}^{T} P x+x^{T} P \dot{x} \\
& =(A x)^{T} P x+x^{T} P A x \\
& =x^{T}\left(A^{T} P+P A\right) x
\end{aligned}
$$

For stability we need $A^{T} P+A P \prec 0$ or $-\left(A^{T} P+P A\right) \succ 0$. From question 1 we have:

$$
A=\left(\begin{array}{cc}
-1 & 1 \\
-4 & -1
\end{array}\right), P=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Which fails, however if we take $P=\left(\begin{array}{cc}22 & -3 \\ -3 & 7\end{array}\right)$ which is a symmetric matrix with positive eigenvalues $\frac{29 \pm 3 \sqrt{29}}{2} \approx(22.5,6.4)$ and thus is positive definite, then:

$$
\begin{aligned}
A^{T} P+P A & =\left(\begin{array}{cc}
-10 & -25 \\
25 & -10
\end{array}\right)+\left(\begin{array}{cc}
-10 & 25 \\
-25 & -10
\end{array}\right) \\
& =\left(\begin{array}{cc}
-20 & 0 \\
0 & -20
\end{array}\right) \\
x^{T}\left(A^{T} P+P A\right) x & =-20 x_{1}^{2}-20 x_{2}^{2}
\end{aligned}
$$

Which is Lyaponov stable.

## Discrete

Consider the discrete system $x(k+1)=A x(k)$ with $V(x)=x^{T} P x$ and $P$ is a positive-definite matrix.

$$
\begin{aligned}
D[V(x(k))] & =V(x(k+1))-V(x(k)) \\
& =V(A x(k))-V(x(k)) \\
& =(A x(k))^{T} P A x(k)-x(k)^{T} P x(k) \\
& =x^{T}(k)\left(A^{T} P A-P\right) x(k)
\end{aligned}
$$

For stability we need $D[V(x(k))]<0$ for all $x \neq 0$ thus we require $A^{T} P A-P \prec 0$ or $P-A^{T} P A \succ 0$. From question 2 we have:

$$
A=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
3 & -\frac{1}{2}
\end{array}\right), P=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Which fails, however if we take $P=\left(\begin{array}{cc}164 & -24 \\ -24 & 20\end{array}\right)$ which is a symmetric matrix with positive eigenvalues $92 \pm 24 \sqrt{10} \approx(167.9,16.1)$ and thus is positive definite, then:

$$
\begin{aligned}
A^{T} P A-P & =\left(\begin{array}{cc}
\frac{1}{2} & 3 \\
0 & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
164 & -24 \\
-24 & 20
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
3 & -\frac{1}{2}
\end{array}\right)-\left(\begin{array}{cc}
164 & -24 \\
-24 & 20
\end{array}\right) \\
& =\left(\begin{array}{cc}
10 & 48 \\
12 & -10
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
3 & -\frac{1}{2}
\end{array}\right)-\left(\begin{array}{cc}
164 & -24 \\
-24 & 20
\end{array}\right) \\
& =\left(\begin{array}{cc}
149 & -24 \\
-24 & 5
\end{array}\right)-\left(\begin{array}{cc}
164 & -24 \\
-24 & 20
\end{array}\right) \\
& =\left(\begin{array}{cc}
-15 & 0 \\
0 & -15
\end{array}\right) \\
x^{T}\left(A^{T} P A-P\right) x & =-15 x_{1}^{2}-15 x_{2}^{2}
\end{aligned}
$$

Which is Lyaponov stable.

## Question 4

Prove that if all eigenvalues of $A$ have negative real part then there exists a matrix $P$ such that $V(x)=x^{T} P x$ is a Lyaponov function, for the system $\dot{x}=A x$.

In order for $V(x)$ to be a Lyaponov function we require a positive definite $P$ such that $A^{T} P+$ $P A=-Q$ is negative definite (or negative semi-definite), ie. $\dot{V}(x)=-x^{T} Q x \leq 0$

Thus given any suitable positive-definite $Q$ we need to solve the Lyaponov equation $\left(A^{T} P+P A=-Q\right)$ for $P$. Consider the definition:

$$
P=\int_{0}^{\infty} e^{A^{T} t} Q e^{A t} d t
$$

which is well defined (since $A$ has eigenvalues with negative real parts), and also symmetric and positive-definite (from properties of $Q$ ). Then

$$
\begin{aligned}
A^{T} P+P A & =\int_{0}^{\infty} A^{T} e^{A^{T} t} Q e^{A t}+e^{A^{T} t} Q e^{A t} A d t \\
& =\int_{0}^{\infty} \frac{d}{d t}\left[e^{A^{T} t} Q e^{A t}\right] d t \\
& =\left[e^{A^{T} t} Q e^{A t}\right]_{0}^{\infty} \\
& =-Q
\end{aligned}
$$

Thus $P$ exists and satisfies the Lyaponov equation. Note: to show $P$ is positive definite we consider

$$
\begin{aligned}
x^{T} P x & =\int_{0}^{\infty} x^{T} e^{A^{T}} t Q e^{A t} x d t \\
& =\int_{0}^{\infty}\left\|Q^{\frac{1}{2}} e^{A t} x\right\|^{2} d t \geq 0
\end{aligned}
$$

Therefore if $A$ has eigenvalues with negative real parts, then we can choose any positive-definite $Q$, such that $P$ exists and $V(x)=x^{T} P x$ is a Lyaponov function.

## Question 5

A rabbit is running on the $x$-axis at a constant velocity $R$, a hound is chasing at a constant velocity $H>R$, always facing directly towards (starting at any location). Show via Lyaponov that the hound catches the rabbit.

Since constant velocity we have the rabbit

$$
\begin{aligned}
\dot{x}_{r} & =R \\
\dot{y}_{r} & =y_{r}=0
\end{aligned}
$$

We have the hound moving closer (directly) towards the rabbit, at an equally scaled proportion $c \in \mathbb{R}_{+}$based on current position.

$$
\begin{aligned}
\dot{x}_{h} & =-c\left(x_{h}-x_{r}\right) \\
\dot{y}_{h} & =-c\left(y_{h}-y_{r}\right)=-c y_{h}
\end{aligned}
$$

Since the hound runs at constant speed $H$ we have

$$
\begin{aligned}
\dot{x}_{h}^{2}+\dot{y}_{h}^{2} & =H^{2} \\
c^{2}\left(x_{h}-x_{r}\right)^{2}+c^{2} y_{h}^{2} & =H^{2} \\
c & =\frac{H}{\sqrt{\left(x_{h}-x_{r}\right)^{2}+y_{h}^{2}}}
\end{aligned}
$$

For simplicity we relabel variables and take the rabbit as the origin $x=x_{h}-x_{r}, y=y_{h}$

$$
\begin{aligned}
\dot{x} & =\dot{x}_{h}-\dot{x}_{r} \\
& =-\frac{H}{\sqrt{\left(x_{h}-x_{r}\right)^{2}+y_{h}^{2}}}\left(x_{h}-x_{r}\right)-R \\
& =-\frac{H}{\sqrt{x^{2}+y^{2}}} x-R \\
\dot{y} & =\dot{y}_{h} \\
& =-\frac{H}{\sqrt{x^{2}+y^{2}}} y
\end{aligned}
$$

Now consider the Lyaponov function $v(x, y)=x^{2}+y^{2}$ which is actually the distance squared between the rabbit and the hound

$$
\begin{aligned}
\dot{v}(x, y) & =2 \dot{x} x+2 \dot{y} y \\
& =-2 x^{2} \frac{H}{\sqrt{x^{2}+y^{2}}}-2 R x-2 y^{2} \frac{H}{\sqrt{x^{2}+y^{2}}} \\
& =-\frac{2 H}{\sqrt{x^{2}+y^{2}}}\left(x^{2}+y^{2}\right)-2 R x \\
& =-2 H \sqrt{x^{2}+y^{2}}-2 R x
\end{aligned}
$$

Clearly for $y \neq 0$ we have $\dot{v}(0, y)<0$, and similarly for $x>0$. When $x<0$ we have

$$
\begin{aligned}
-2 H \sqrt{x^{2}+y^{2}}-2 R x & \leq-2 H \sqrt{x^{2}}-2 R x \\
& =-2 H|x|+2 R|x| \\
& =2|x|(R-H) \\
& <0
\end{aligned}
$$

since $H>R$. Since $\dot{v}(x, y)<0$ except for origin $(0,0)$ we know that $v(x, y)$ (i.e. distance squared) is a Lyaponov function, hence the equilibrium solution of 0 (hound catches rabbit) is stable.
Thus we have shown that if $H>R$ the hound always catches the rabbit (no matter where it starts).

## Question 6

Consider the fixed point iteration to find the square root: $x^{2}=\alpha$ with $\alpha>0$

$$
\begin{aligned}
x(k+1) & =f(x(k)) \\
& =x(k)+\alpha-x^{2}(k)
\end{aligned}
$$

Clearly if $x(k)=\sqrt{\alpha}$ we have $x(k+1)=\sqrt{\alpha}+\alpha-(\sqrt{\alpha})^{2}=\sqrt{\alpha}$ which is a fixed point equilibrium $\bar{x}$.

We can consider $x(k)$ and $x(k+1)$ in terms of $\bar{x}$

$$
\begin{aligned}
x(k) & =\bar{x}-\varepsilon_{k} \\
x(k+1) & =\bar{x}-\varepsilon_{k+1}
\end{aligned}
$$

where convergence requires $\lim _{k \rightarrow \infty} \varepsilon_{k}=0$

The range of values for convergence can be found by analyzing for small $\varepsilon$

$$
\begin{aligned}
x(k+1) & =f\left(\bar{x}-\varepsilon_{k}\right) \\
\bar{x}-\varepsilon_{k+1} & =f(\bar{x})-\varepsilon_{k} f^{\prime}(\bar{x})+\varepsilon_{k}^{2} \frac{f^{\prime \prime}(\bar{x})}{2}+\cdots \\
& =\bar{x}-\varepsilon_{k}(1-2 \bar{x})+\mathcal{O}\left(\varepsilon_{k}^{2}\right) \\
\varepsilon_{k+1} & =\varepsilon_{k}(1-2 \bar{x})+\mathcal{O}\left(\varepsilon_{k}^{2}\right)
\end{aligned}
$$

Thus we have approximately a geometric sequence

$$
\varepsilon_{k} \approx(1-2 \bar{x})^{k-1} \varepsilon_{1}
$$

which has convergence when

$$
\begin{array}{ccc}
0< & |1-2 \bar{x}| & <1 \\
0< & \bar{x} & <1
\end{array}
$$

Thus $0<\alpha<1$ and $0<x_{0}<1$.

## Question 7

Consider a system with $n$ queues and a policy to route to queue $i$ with probability $u_{i}\left(\sum_{i} u_{i}=1\right)$. We have arrival probability $a$, and departure probability $d_{i}$.

$$
\begin{gathered}
X_{i}(k+1)=X_{i}(k)+A_{i}(k)-D_{i}(k)+L_{i}(k) \\
A(k)= \begin{cases}e_{1} & \text { w.p } a u_{1} \\
\vdots & \\
e_{n} & \text { w.p } a u_{n} \\
0 & \text { w.p } 1-a\end{cases}
\end{gathered}
$$

a) Clearly a necessary (but not necessarily sufficient) condition of stability is that $a<\sum_{i=1}^{n} d_{i}$ otherwise our total arrivals will be more than our total departures and the queue will continue to grow which is unstable.
b) For $n=2$ find range of $u$ 's that stabilizes the system based on the parameters $a, d_{1}$ and $d_{2}$. We require $a u<d_{1}$ and $a(1-u)<d_{2}$ thus we have

$$
\begin{aligned}
a u+a \bar{u} & <d_{1}+d_{2} \\
a u+a-a u & <d_{1}+d_{2} \\
a & <d_{1}+d_{2}
\end{aligned}
$$

which is our necessary condition for stability. Then our values for $u$ (rearranging $a u<d_{1}$ and $\left.a(1-u)<d_{2}\right)$ are

$$
\max \left\{0,1-\frac{d_{2}}{a}\right\}<u<\min \left\{1, \frac{d_{1}}{a}\right\}
$$

since $0<u<1$
c) Consider "join shortest queue" derive Lyaponov function and show it is bounded by $-\varepsilon$ with $\varepsilon>0$

Here we have

$$
A(k)= \begin{cases}I_{\left\{x_{1} \leq x_{2}\right\}} & \text { w.p } a \\ I_{\left\{x_{1}>x_{2}\right\}} & \\ \mathbf{0} & \text { w.p } 1-a\end{cases}
$$

Intuitively this is good for stability as it distributes work appropriately across the system. Evaluating this with Foster-Lyaponov criterion gives:

$$
\begin{aligned}
P V-V & =\mathbb{E}[V(X(t+1)) \mid X(t)=x]-V(x) \\
& \leq \mathbb{E}\left[\left.\sum_{i=1}^{2} \frac{1}{2}\left(X_{i}+A_{i}(t)-D_{i}(t)\right)^{2}-\left(x_{1}^{2}+x_{2}^{2}\right) \right\rvert\, X(t)=x\right] \\
& =\sum_{i=1}^{2} x_{i} \mathbb{E}\left[A_{i}(t)-D_{i}(t) \mid X(t)=x\right]+\frac{1}{2} \mathbb{E}\left[\left(A_{i}(t)-D_{i}(t)\right)^{2} \mid X(t)=x\right] \\
& \leq 1+\sum_{i=1}^{2} x_{i} \mathbb{E}\left[A_{i}(t)-D_{i}(t) \mid X(t)=x\right] \\
& =1+\left(x_{1}\left(a I_{\left\{x_{1} \leq x_{2}\right\}}-d_{1}\right)+x_{2}\left(a I_{\left\{x_{1}>x_{2}\right\}}-d_{2}\right)\right)
\end{aligned}
$$

Consider when $u=I_{\left\{x_{1} \leq x_{2}\right\}}$ then we have 1-u $=I_{\left\{x_{1}>x_{2}\right\}}$ and stability follows from our previous question.

Since we have that $x_{1} I_{\left\{x_{1} \leq x_{2}\right\}}+x_{2} I_{\left\{x_{1}>x_{2}\right\}} \leq u x_{1}+(1-u) x_{2}$ for any $u \in[0,1]$ we have

$$
\begin{aligned}
P V-V & \leq 1+\left(x_{1}\left(a u-d_{1}\right)+x_{2}\left(a(1-u)-d_{2}\right)\right) \\
& \leq-\varepsilon+1
\end{aligned}
$$

When $a u<d_{1}$ and $a(1-u)<d_{2}$. Note: we can ignore the bounded constant 1 in FosterLyaponov.

Thus the 'join the shortest queue' policy is just as good as random allocation in terms of stability.

