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Question 1

Give an example of a stable continuous system & = Az such that V (z) = 27

function.

x is not a Lyaponov

We need to find a matrix A such that it’s eigenvalues have negative real parts (for stability) and
the function V' (z) > 0 for some x (i.e. not a Lyaponov function).

Vi) = iTe+2Td
= (A2)T 2+ 2T Az
= 2T (AT + A) T

Thus we require AT + A to be NOT a negative definite matrix.

-1
—4 -1

wea=( ) (00 )-(33)

This is not a negative definite matrix. Consider the points x = ( x; )
—T1

o (33)(5) - ()

= 2:13%

Choosing A = < ) gives eigenvalues of A\ = —1 £ 2i (thus stable) and

which is positive, thus V (z) is not a Lyaponov function.

Question 2

T

Give an example of a stable discrete system x (k+ 1) = Ax (k) such that V (z) = z" x is not a

Lyaponov function.
We need to find a matrix A such that it’s eigenvalues are within the complex unit circle i.e.

I\ |l < 1Vi (for stability) and the function V (Az) — V (x) > 0 for some z (i.e. not a Lyaponov
function).

V(Az) -V (z) = (Az)' Az —2"2
= 27 (ATA - I) x

1



Thus we require AT A — I to be NOT a negative definite matrix.
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Choosing A = <

o
D=

O
[SSENIER

ATA—I:<

D))

This is not a negative definite matrix. Consider the points x = ( 1 )

D=

x1

) gives eigenvalues of A\ = £1 (thus stable) and
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(3 )(2) - (P

which is positive, thus V (z) is not a Lyaponov function.

Question 3

Continuous

Consider the continuous system & = Az with V () = 27 Pz and P is a positive-definite matrix.

V(z) = i'Px+atPi
= (Az)" Pz +2"PAx
= g7 (ATP + PA) x

For stability we need ATP + AP <0 or — (ATP + PA) > 0. From question 1 we have:

11 10
2 -3

-3 7

eigenvalues w ~ (22.5, 6.4) and thus is positive definite, then:

Which fails, however if we take P = (

TP+ PA — (—10 —25>+<—10 25

25  —10 -25 -10
- -20 0
N 0 -20
zt (ATP + PA) r = —20x% — 20x3

Which is Lyaponov stable.

Discrete

> which is a symmetric matrix with positive

)

Consider the discrete system x (k + 1) = Az (k) with V (z) = 27 Pz and P is a positive-definite

matrix.



Az (k) =V (z (k))
= (Az (k)" PAz (k) — z (k)" Pz (k)
= 2" (k) (A"PA - P)x (k)

For stability we need D[V (z (k))] < 0 for all x # 0 thus we require ATPA — P < 0 or
P — ATPA ~ 0. From question 2 we have:

0 10

)=y

A= (
164 —24

Which fails, however if we take P = < o4 90

eigenvalues 92 + 24/10 ~ (167.9, 16.1) and thus is positive definite, then:
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) which is a symmetric matrix with positive

1 1
i3 164 —24 10 164 —24
T _ — 2 2 _
ATPA=P (0—%)(-24 20)(3-%) <—24 20)
_ (10 48 3 0\ [ 164 —24
- 12 —10 3 -1 —24 20
B 149 —24 164 —24
-4 5 —24 20
[ —15
- 0 5
T(ATPA—P)J: = —1522 — 1522

Which is Lyaponov stable.

Question 4

Prove that if all eigenvalues of A have negative real part then there exists a matrix P such that
V () = 27 Pz is a Lyaponov function, for the system & = Az.

In order for V (z) to be a Lyaponov function we require a positive definite P such that AT P +
PA = —Q is negative definite (or negative semi-definite), ie. V (z) = —27Qz < 0

Thus given any suitable positive-definite ) we need to solve the Lyaponov equation (ATP + PA = —Q)
for P. Consider the definition:

o T
P:/ eA Qe dt
0

which is well defined (since A has eigenvalues with negative real parts), and also symmetric and
positive-definite (from properties of @). Then

ATP 1+ PA / AT ATt QeAt 1 ATt QA A dt
0

_ /0 Oojt [ Qe] at
_ [eA thAt}Zo
= —Q



Thus P exists and satisfies the Lyaponov equation. Note: to show P is positive definite we
consider

o0
TPy = / :L‘TeATthAt:Bdt
0
© 2
_ / |QFeta| " dt >0
0

Therefore if A has eigenvalues with negative real parts, then we can choose any positive-definite
Q, such that P exists and V (z) = 27 Pz is a Lyaponov function.
Question 5

A rabbit is running on the z-axis at a constant velocity R, a hound is chasing at a constant
velocity H > R, always facing directly towards (starting at any location). Show via Lyaponov
that the hound catches the rabbit.

Since constant velocity we have the rabbit

T = R
g = yr=20

We have the hound moving closer (directly) towards the rabbit, at an equally scaled proportion
¢ € Ry based on current position.

T = —c(ap—xp)

g = —c(yn—yr) = —cyn

Since the hound runs at constant speed H we have

h+gh = H
02(xh—xr)2+02y,21 = H?
H

\/(xh - :Ur)2 + y]%

C =

For simplicity we relabel variables and take the rabbit as the origin z =z, — x,, y = Y

Now consider the Lyaponov function v (x,y) = 22 + 3? which is actually the distance squared
between the rabbit and the hound



v(z,y) = 24z + 29y
H H

2H

= - (:1:2 + y2) — 2Rz

= —2H\/22+y?— 2Rz

= —2z2 — 2Rz — 2y?

Clearly for y # 0 we have v (0,y) < 0, and similarly for x > 0. When x < 0 we have

—2H\/22+y2 —2Rx < —2HV22— 2Rz
—2H |z| + 2R ||
2|z[(R—H)

< 0

since H > R. Since 0 (z,y) < 0 except for origin (0,0) we know that v (z,y) (i.e. distance
squared) is a Lyaponov function, hence the equilibrium solution of 0 (hound catches rabbit) is
stable.

Thus we have shown that if H > R the hound always catches the rabbit (no matter where it
starts).

Question 6

Consider the fixed point iteration to find the square root: 2 = a with o > 0
2(k+1) = f(x(k)
= a(k)+a—2°(k)

Clearly if 2 (k) = /& we have z(k+1) = a+ a — (ya)® = a which is a fixed point
equilibrium Zz.

We can consider x (k) and = (k 4+ 1) in terms of =

x(k) = x—e¢g

8
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T — €kt1
where convergence requires limy_, € = 0

The range of values for convergence can be found by analyzing for small &

z(k+1) = f(x—eg)

T—ehs1 = f(f)—€kf’(;i)+eif 2@)%—---
= 25 (1-22)+0(<})
ery1 = ex(1-22)+0 (si)

Thus we have approximately a geometric sequence



er~ (1—20)" g

which has convergence when

0< [1-27] <1
0< z <1

ThusO<a<land 0 < zg < 1.

Question 7

Consider a system with n queues and a policy to route to queue ¢ with probability u; (3°; u; = 1).
We have arrival probability a, and departure probability d;.

X; (k+1)=X;(k)+ A; (k) — D; (k) + L; (k)

(&) W.p auy

ARy =1’ , Dz-<k>—{

en W.p QU

0 wpl—-a

a) Clearly a necessary (but not necessarily sufficient) condition of stability is that a < i, d;
otherwise our total arrivals will be more than our total departures and the queue will continue
to grow which is unstable.

b) For n = 2 find range of u’s that stabilizes the system based on the parameters a, d; and da.
We require au < dj and a (1 — u) < dg thus we have

au+au < di+ds
av+a—au < di+ds
a < di+dy

which is our necessary condition for stability. Then our values for u (rearranging au < d; and

a(l—u) <ds) are
max{(), 1-— dQ} <u< min{l, dl}
a a

c¢) Consider “join shortest queue” derive Lyaponov function and show it is bounded by —e with
e>0

since 0 <u<1

Here we have
I{x1§x2} wW.p a
Ak) = { Hor>en)

0 wpl—a

Intuitively this is good for stability as it distributes work appropriately across the system.
Evaluating this with Foster-Lyaponov criterion gives:



PV-V = E[V(X({t+1)|X{t)=2]-V(z)

< 14> mE[A;(t) — Di(t) | X (t) = ]

= 1+ (xl (af{xlgm} - dl) + 22 (al{m>x2} - d2))

Consider when u = I, <,} then we have 1 —u = I, ,,} and stability follows from our previous
question.

Since we have that 71/, <4, + Tol{ >0,y < vzt + (1 — u) 29 for any u € [0, 1] we have

PV -V 14 (21 (au —dy) + 22 (a (1 — u) — da))

<
< —e+1

When au < d; and a (1 —u) < da. Note: we can ignore the bounded constant 1 in Foster-
Lyaponov.

Thus the ’join the shortest queue’ policy is just as good as random allocation in terms of stability.



