Control Theory
 Homework 7
 Due 9 Nov 2012

1. Consider the system $\dot{x}(t)=-10 x(t)+u(t)$. Using the Hamilton-JacobiBellman equation, find the control that minimizes the cost

$$
J=\frac{1}{2} x^{2}(T)+\int_{0}^{T}\left(\frac{1}{4} x^{2}(t)+\frac{1}{2} u^{2}(t)\right) d t
$$

2. Consider the system $\dot{x}_{1}(t)=x_{2}(t), \dot{x}_{2}(t)=-x_{1}(t)-2 x_{2}(t)+u(t)$. Define the cost as

$$
J=10 x_{1}^{2}(T)+\frac{1}{2} \int_{0}^{T}\left(x_{1}^{2}(t)+2 x_{2}^{2}(t)+u^{2}(t)\right) d t
$$

The control that minimizes J can be found in the form

$$
u^{*}(t)=L(t) K(t) x(t)
$$

where the matrix $L(t)$ can be found explicitly for every t, and the matrix $K(t)$ satisfies an ODE. Find $L(t)$ and write out the ODE for $K(t)$.
3. Write down the Euler equation for the functional

$$
J(x)=\int_{0}^{2}\left(x^{2}(t)+2 \dot{x}(t) x(t)+\dot{x}^{2}(t)\right) d t
$$

in the Banach space $C^{2}([0,2] \rightarrow \mathbb{R})$. Solve this equation under the boundary conditions $x(0)=1, x(2)=-3$.
4. Determine the necessary conditions that must be satisfied by the extremals of the functional

$$
\int_{t_{0}}^{t_{f}}\left(1+w_{3}^{2}(t)\right) d t
$$

with the constraints $\dot{w}_{1}(t)=w_{2}(t), \dot{w}_{2}(t)=w_{3}(t)$.
5. The system $\dot{x}_{1}(t)=x_{2}(t), \dot{x}_{2}(t)=-x_{1}(t)+\left(1-x_{1}^{2}(t)\right) x_{2}(t)+u(t)$ is to be controlled to minimize the cost

$$
\frac{1}{2} \int_{0}^{1}\left(2 x_{1}^{2}(t)+x_{2}^{2}(t)+u^{2}(t)\right) d t
$$

Assume $x(0)=a$ and $x(1)=b$ for some $a, b \in \mathbb{R}^{2}$. Write down the corresponding costate equations. Find the control(s) which make(s) the partial derivative of the Hamiltonian in u equal to 0 .

