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Control theory is a field of mathematics and
engineering concerned with manipulating the output
of dynamical systems. This might sound like the
perfect field of study for a control freak, however,
the reader from a pure mathematical background,
who is familiar with calculating exact solutions and
rigorous proofs, should beware. It is only very rarely
that the systems studied in Control Theory can be
controlled perfectly. One of the most important
tasks in this subject is deciding what can’t be
controlled, or what is impractical to control, and
focusing on what can. This article aims to high-
light these kinds of necessary compromises in the
level of control a control theorist must make. Before
we do this though, some background must be covered.

Background

A dynamical system is the representation of some
physical system which changes the state it is in over
time. An example of such a dynamical system is a
car driving under cruise control. The physical object
in the system is referred to as the plant, and the
state could be any measurable property of the plant,
such as its position, orientation, or temperature.
Usually, the state is a list (or vector) of several
important properties, rather than a single measure-
ment. If there are n important properties, the state
is represented as a function of time, x(t) ∈ Rn. In
the cruise control example, the plant is the car, and
depending on the detail of the representation, the
state could be as simple as the number of revolutions
per second the engine is performing, or a vector of
values describing the velocity and orientation of each
of the car’s wheels. The properties of the plant that
we want to control are referred to as the output,
denoted y(t) ∈ Rp for some p ∈ N. In the case of
this example, the output is the net velocity of the car.

For the dynamical system to be relevant to control
theory, there must be some way for the system to
affect the state it is in; this process is known as the
control. In the car example, the cruise control of the
car can affect the car’s velocity by controlling the
acceleration of the engine. The affect the control has
on the plant is referred to as the input of the system,
denoted u(t) ∈ Rm. All that is needed to model
this dynamical system is an equation or system of
equations which describe the evolution of the state
with time, and an equation or system of equations
which maps the state to the output [1, Chapter 2.2].
These dynamic systems can be represented visually
with a diagram known as a block diagram, such as
in Figure 1.

Figure 1: A block diagram illustrating an uncon-
trolled system.

SISO Systems

Even in the very simplest of systems, a control theo-
rist must make compromises over the aspects of con-
trol that can be taken over the system. An example
of such a system is the linear, time-invariant (LTI)
single-input single-output (SISO) system. In these
systems, the the dimension of the input and output
is 1, and the only state variable of interest is the out-
put variable. Such systems can usually be described
by a single linear ODE relating y(t) and u(t). Taking
the Laplace transform of this ODE and rearranging
for the Y (s) yields a function of the form

Y (s) = H(s)U(s)
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for some function H(s). This function is known as
the transfer function of the system. In Figure 1, as
there is no control, the input is just the default effect
the environment has on the plant. This uncontrolled
environmental signal is referred to as the reference,
denoted r(t). One way to control such a system is
for a control (G) to be placed before the plant, which
converts the reference into the input of the plant. For
the control to have information about the output of
the plant, part of the output is fed back into the
control. A second control (F ) can be placed on the
feedback signal, to yield the block diagram in Fig-
ure 2. Taking the Laplace transform of this system
now gives the equation

Y (s) = Hc(s)R(s) = R(s)
G(s)H(s)

1 + F (s)G(s)H(s)
.

The function Hc(s) is called the closed loop transfer
function [1].

Figure 2: A plant with closed loop control.

To control this system, the controls G and F must
be chosen so that certain reference signals produce
some desired output. A sudden change in reference
value is a signal which can have a acute effect on a
plant, so a common reference signal that needs to be
controlled is a step function. Two desirable aspects of
the step function response is that the output adjusts
to the new value quickly, but without overshooting
the new value drastically. The time taken to adjust
to the new value is called the rise time, tr, and the
percent that the response overshoots the final value
is denoted Mp.

Unfortunately, even in a system as simple as this,
it is rarely that both these goals can be satisfied. A
low tr usually implies a high Mp, and vice versa.

The control theorist must tune the control so that
an appropriate balance is achieved between these two
goals. This is a common theme of control theory; a
compromise must be made between different desired
outcomes of the system being controlled.

MIMO systems

Another lesson which must be learnt in control the-
ory is that some aspects of some systems cannot be
controlled. An example of a system that suffers from
this setback is the multi-input multi-output (MIMO)
system described by{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and
D ∈ Rp×m. To have complete control over the plant,
there needs to be an input, which takes arbitrary
state xs ∈ Rn to arbitrary state xd ∈ Rn. If for any
state xs ∈ Rn, there is an input which takes xs to the
origin in finite time, the state xs is called controllable,
and if for any state xd ∈ Rn, there is an input which
takes the origin to xd in finite time, the state xd is
called reachable. A system is controllable/reachable
if every state is controllable/reachable. It can be
shown that if a state is reachable, it is controllable.
Unfortunately, not all systems are controllable. A
system is controllable if and only if [1, Chapter 6.2]

rank
([
A,AB, . . . , An−1B

])
= n.

While feedback control will result in quite sophisti-
cated control for controllable systems, the same level
of control cannot be achieved in an uncontrollable
system. The control theorist must make another
compromise, either the system must be modified in
some way to make it controllable, or the goal of com-
plete control over the system must be abandoned,
and replaced with a less ambitions goal, such as
keeping the system bounded. Such a goal involves
designing the system so that the each state does
not diverge to infinity, but the systems stays within
some finite subspace of the total state space.
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A similar problem is the Linear Quadratic Regula-
tor (LQR). In this problem, we have the same ODE
describing the state variable, however, our objective
is no longer to control the output y, but to minimise
the cost functional∫ T

0

(x(t)′Qx(t) + u(t)′Ru(t)) dt + x(T )′Qfx(T ),

(2)
where T is the time horizon (the length of time the
process will run for), Q is a symmetric nonnegative
definite matrix, and Qf and R are symmetric
positive definite matrices. Problems like this arise
often. For example, the plant may be a vehicle,
which needs to travel to a specific location by time
T . Then x(t) could represent its position, and Q
maps the position to fuel consumption. The cost (in
terms of fuel consumption) of performing different
maneuvers in this vehicle could be represented by R,
and the input u is the sequence of maneuvers which
the vehicle is instructed to do in order to reach the
required location. The control which results in the
lowest fuel consumption but still moves the vehicle
to the required location is desired.

Like the previous problem, there is some very pow-
erful theory which shows that the optimal solution to
the LQR problem is the input

u(t) = −R−1B′P (t)x(t), (3)

where the matrix P (t) can be found by solving the
Riccati equation

−Ṗ (t) = A′P (t) + P (t)A− P (t)BR−1B′P (t) +Q

with boundary condition

P (T ) = Qf .

This Riccati equation is fairly simple to solve
approximately through numerical approximation,
which makes this is an extremely useful theory. Once
again, however, the control theorist must abandon
hopes for calculating the exact optimal solution u,
as the Riccati equations in general do not have an
explicit solution [2, Chapter 3.12].

These examples of problems from control theory
should illustrate that the goal of achieving perfect
control of a system is unnecessary and impractical.
Once this goal is abandoned, and a compromise is
made on the level of the control over the system, the
theory for controlling such systems to achieve these
more practical goals is quite powerful.

Physical limitations

The theory discussed so far can control the many
idealised problems mentioned so far quite accurately,
albeit with some limitations. However, in the real
world, measurements have errors, and these errors
may cause otherwise stable controls to diverge. This
is the ultimate reason for why a control theorist
cannot be a control freak; despite the most compre-
hensive theory, the limitations of physical problems
would render perfect control useless. However, there
are a number of ideas from control theory developed
to deal with these limitations.

So far we have assumed that any mathematically
valid control is possible. However, all possible states
and controls may not be practical. In the cruise
control example, the car has an upper bound on its
acceleration, so an input prescribing great rates of
change is not possible. To deal with situations like
this, a method known as model predictive control
(MPC) can be used. Before describing this method,
it should be noted that unlike the previous control
techniques discussed, which calculate the control
‘before’ the dynamical system is run (offline), this
method of control updates the control rule while
the process is running (online). Consequently,
this method is used in petro-chemical industries,
where reactions are ‘slow enough’ for these online
calculations can be made in time to be implemented
[4].

Consider the LQR problem with the added con-
straint

F

[
x(t)
u(t)

]
≤ b

for some matrix F and some vector b. The original
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control for an LQR problem can be found, but if the
control reaches the boundary of the constraints at
some time τ , this control may no longer be optimal
after τ . Using MPC, the time scale is discretised
in to time steps (which will be assumed to be size
1), and a time horizon, N < T , is chosen. At the
first time step, the optimal control only until time
N is calculated, subject to constraints. Because the
time horizon has been restricted from T to N , the
calculated control will not in general be the same
as the optimal control over all of T . However, this
control is only used for the first time step, and at
the next time step the optimal control for the next
N time steps is calculated. This method of control
is sub-optimal, but can result in more sensible
solutions in physical applications, as it avoids the
overambitious task of predicting the optimal control
over the whole duration of the process.

Plant uncertainty

Another major physical limitation is that measure-
ments have errors, and the parameters that model
these systems have uncertainties. These errors, how-
ever small, can build upon each other to result in
significant inaccuracies. One way to avoid this prob-
lem is to add a noise term to the dynamic system
model. For example, consider the LQR problem in
discrete time, with the following modification to the
dynamic system model (1):{

x(n+ 1) = Ax(n) +Bu(n) + ξx(n)

y(n) = Cx(n) +Du(n) + ξy(n),

where ξx(n) and ξy(n) are random processes, which
represent the random errors in the measurements.
Naturally, this implies that the state and output vari-
ables x(n) and y(n) are random processes also. It
is reasonable to assume that the ξi(n) as sequences
are independent, and by the assumption of time-
invariance, identically distributed. Furthermore, the
errors at each time step are assumed to be the sum of
many tiny independent disturbances, so by the cen-
tral limit theorem, it may be assumed that ξi(n) are

Gaussian random variables. If there is no net drift in
the value of the errors, the mean of these Gaussian
variables will be assumed to be 0, and the covariance
of these variables are denoted Σx and Σy. This prob-
lem is known as the linear quadratic Gaussian reg-
ulator (LQG), and the objective is to find the u(n)
which minimises the expected value of the discrete
version of (2),

J [u] = E

(
T∑

i=0

(x(i)′Qx(i) + u(i)′Ru(i))

)
.

In order to control this system, the true value of
the state must be estimated. To do this, a technique
known as Kalman filtering is used. This method
uses minimum mean squared estimation of the state
variables for time steps from 0 to N based on the
known input and output variables y(i) and u(i), for
i ∈ {0, . . . , N − 1}. It turns out that the optimal
control for a LQG problem is to use Kalman filtering
to estimate the state, and then use same control (3)
derived for the deterministic LQR problem on the
estimated system [3, Chapter 4.3.2].

There are a number of other methods for control-
ling a plant with uncertainty, rather than model the
dynamic system with noise. One of these methods is
robust control. The goal of this method is to be able
to control the plant even in the ‘worst case’ scenario.
To do this, the system is modeled by{

ẋ(t) = (A+ δG)x(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(4)

for some arbitrary matrix G and some small δ. If
the uncertainty in the plant is bounded by some
magnitude ε, then if a control is found for (4), for any
small δ < ε and any G in some class of matrices, then
the plant with uncertainty will also be controlled
by this control. Thus, the plant will be controlled
despite the uncertainty.

Another method for controlling a plant with un-
certainty is adaptive control. This method is espe-
cially used for systems where the uncertainty is in
the model itself, i.e. the parameters A,B,C,D in
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(1) are unknown. Adaptive control methods can esti-
mate these parameters while calculating the optimal
control online, but in some cases these parameters do
not need to be estimated. Finally, the uncertainty in
the system may not just come from uncertain param-
eters, but the dynamic system being modeled may
be inherently stochastic. Arrival processes, such as
in telecommunications and birth and death processes
are examples of such inherently stochastic systems.
In these systems with uncertainty, the goal of exer-
cising exact control over the system is a faint memory.

Conclusion

This has been a very brief outline of some of the
problems encountered in control theory. Despite the
name, one of the most important lessons in this the-
ory is that perfect control can only rarely be achieved,
and the vast majority of the time, a compromise in
the detail of the control must be made. However,
when the right compromises are made, very power-
ful theory can be derived, which result in the near
optimal control of many real world systems.
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