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Abstract

Control systems form a vital part of engineering, where anything that needs to be regulated or optimised
can be done so with a technique that is encompassed by control theory. Since the 16th century, problems
have been modelled as dynamical systems so that a mathematical control strategy could be devised and an
equivalent physical strategy invented. Methods for controlling mechanical, analogue and digital systems
have been invented and some are widely used. I will briefly introduce and explain many of the relevant
topics considered to be part of control theory.

“Control Theory” is somewhat an umbrella term,
used to describe a wide range of analytic techniques
and styles which are applied to the control of a math-
ematical system. Much of this theory is linked to sys-
tems theory, since many of the problems that can be
solved can also be modelled as a dynamical system.
The methods involved range from classical open or
closed loop control, up to more modern disturbance
rejection and noise filtering, as well as stabilisation
and fine-tuning.

Systems

Many of the systems can be modelled as a system of
differential equations. Usually these are modelled in
continuous time, however discrete time equations can
also be useful. The basic system model in continuous
time is

ẋ(t) = f(x(t), u(t), t)

y(t) = h(x(t), u(t), t)

where x(t) is the state, u(t) is the control input and
y(t) is the system output at time t. The easiest sys-
tem to consider is one where x, y and u are all scalar.
This is known as a SISO system, which stands for sin-
gle input single output. Generally, these systems look
at signal processing, particularly for systems which

are both linear and time-invariant. These systems
are known as LTI systems and are extremely useful
in control and signal processing.

When considering the simplest, stateless LTI SISO
system, we have that

y(t) = (u ? h)(t)

where h(t) is the impulse response of the system. By
taking the Laplace transform of both sides, we end
up with

Y (s) = U(s)H(s)

where Y (s), U(s) andH(s) are the laplace transforms
of y(t), u(t) and h(t) respectively. The function H(s)
is known as the transfer function of the system and
can be written as

H(s) =
Y (s)

U(s)

Closed loop system

One of the simplest and most useful control systems
is a closed-loop feedback controller, similar to the one
seen in Figure 1. In this system, the output is mea-
sured and sent back into the system to help regulate
the response of the system. Using the same notation
before, we can consider two controllers, G1(S) and
G2(s), so that we can find the closed-loop transfer
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function H̃(s), that is the function which satisfies

Y (s) = R(s)H̃(s)

where R(s) is the laplace transform of the reference
signal r(t) and U(s) is the laplace transform of the
signal u(t) before it enters the plant H(s).

Figure 1: Closed-loop feedback controller

By starting with Y (s) = U(s)H(s) and substitut-
ing back for U(s), G1(s), E(s), R(s) and G2(s), we
end up with the expression

Y (s) = R(s)
G1(s)H(s)

1 +G2(s)G1(s)H(s)

so we have an expression for H̃(s), where Y (s) =
R(s)H̃(s). Quite often these systems are being con-
trolled because some property of stability is desired.

Stability

There are two main types of stability in control sys-
tems: BIBO stability and internal stability. BIBO
stands for bounded inupt bounded output, and con-
cerns the systems ability to return bounded outputs
when given bounded inputs. The second type of sta-
bility is often the most important, and can be deter-
mined using the Routh-Hurwitz criterion.

Internal stability refers to the ability of the system
to return to a state of equilibrium after an arbitrary
displacement from equilibrium. This is commonly as-
sociated with the location of the poles of the transfer
function, H(s). That is, if

H(s) =
N(s)

D(s)

where N(s) and D(s) are polynomials, then the sta-
bility can be determined by the location of all s which
satisfy D(s) = 0. By the Routh-Hurwitz criterion,
the system will be stable if the real parts of all such
s are negative. If we are given a particular system
where H(s) is unstable, then we can design a feed-
back controller like the one in Figure 1, such that
H̃(s) or Hc(s) is stable by choosing G1(s) and G2(s).
If

H(s) =
NH(s)

DH(s)
, G1(s) =

N1(s)

D1(s)
, G2(s) =

N2(s)

D2(s)
,

then we can rewrite the closed loop transfer function
as

Hc(s) =
NHN1D2

DHD1D2 +NHN1N2
.

This system will now be stable if the solutions to
DHD1D2 + NHN1N2 = 0 are all in the left-hand
plane, that is the real part of all the solutions are
negative. The simplest set of controls for the closed
loop system are to take G1(s) = K and G2(s) = 1,
so now the system is stable if the zeros of 1 +KH(s)
are in the left-hand plane.

States

So far, the control methods considered are for sys-
tems where the state doesn’t matter. In many real
life examples this is not the case, so we need to con-
sider methods which control the state of a system.
Most often, systems will be either linear or easily ap-
proximated by a linear system. These linear systems
take the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp. The
matrices are all constant and the system is commonly
referred to as an (A,B,C,D) system. The discrete
time equivalent is just the same, except t is replaced
by n and ẋ(t) becomes x(n+ 1).

For a linear autonomous system, ẋ(t) = Ax(t) +
g(t), solutions take the form Φ(t, t0) = eA(t−t0),
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where eA(t−t0) is the matrix exponential. The laplace
transform for eAt is (sI−A)−1 which is known as the
resolvant. For the full (A,B,C,D) system, the same
computations lead to

H(s) = C(sI −A)−1B +D

Of course, eAt can often be difficult to calculate for
non-diagonal systems, so we can consider a similarity
transform Px̃ = x, where det(P ) 6= 0. The system is
now a (P−1AP,PB,CP,D) system, where P−1AP
is diagonal and eAt is in Jordan normal form.

Controllability

For any (A,B,C,D) system, we can find all states
that we can reach through controlling the system. A
state xd is considered reachable or controllable-from-
the-origin if there exists a control input u that takes
the state x(t) from the zero state to xd in a finite
amount of time.

The converse definition is that a state xs is called
controllable if there exists a control input u that takes
the state from xs to the zero state in a finite amount
of time. Any set of states can also be called reachable
or controllable if every state in the set is reachable or
controllable. If all states are reachable or control-
lable, then the system is a reachable or controllable
system.

To determine if a system is controllable, we can
calculate the controllability matrix from the matrices
A and B, defined to be

con(A,B) = [B,AB,A2B, ..., An−1B]

where the system is controllable if and only if the con-
trollability matrix has full rank. If the matrix does
not have full rank, we can still work out the control-
lable subspace. If Φ(t) is nonsingular, then reachabil-
ity implies controllability and vice versa. This con-
cept is important if we are trying to ensure stability
of a system by controlling the state to the origin.

The linear state feedback law is one way of en-
suring stability in a system when the pair (A,B) is
controllable. If we set

u(t) = Fx(t) + r(t)

we get an augmented system which only depends on
x(t) and r(t). Also, if (A,B) is controllable, then
it is possible to choose the eigenvalues of the state
transition matrix to be what we want by making the
right choice of F .

Observability

A system is observable if we can determine the initial
condition for the state given the inputs and outputs
over a finite time interval. The observability of a sys-
tem can be found from the matrices A and C using a
similar method to controllability, where the observ-
ability matrix is given by

obs(A,C) = [CT , ATCT , (A2)TCT , ..., (An−1)TCT ]T

The condition for observability of a system is sim-
ilar to that for controllability; that is, the observ-
ability matrix has full rank if and only if the system
is observable. One interesting result is that there is
a duality between controllability and observability.
When given a standard (A,B,C,D) system, we can
define the dual system as

ẋ(t) = ATx(t) + CTu(t)

y(t) = BTx(t) +DTu(t)

The result is that the dual system is controllable
if and only if the original system is observable and
the original system is controllable if and only if the
dual system is observable. In real life, not all systems
are observable, so it is useful to design an observer to
estimate the state of the system and make corrections
based on this estimation.

Observers

When a system is not observable, it is possible to
create a state estimator and use that to control the
system instead. The only problem remaining is to
make sure that the estimate starts and remains accu-
rate. The Luenberger Observer is given by the system
on the next page.
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˙̂x(t) = Ax̂(t) +Bu(t) +K(y − ŷ)

ŷ(t) = Cx̂(t) +Du(t)

This augmented system is now a (A − KC, [B −
KD,K], C, [D, 0]) system whose input is now
[uT , yT ], that is the input and output of the origi-
nal system. All that remains is to ensure that the
distance between the estimate and the actual state is
stable. If we define the error between the state and
the estimate to be

e(t) = x(t)− x̂(t)

then it turns out that the estimation error actually
behaves like an autonomous system, where

ė(t) = (A−KC)e(t)

Now if we choose K such that the real parts of the
eigenvalues of (A−KC) are all strictly negative, the
estimate will be asymptotically stable, meaning the
estimation error will disappear as t → ∞. We can
also combine this with a linear state feedback similar
to the one on the last page to control the estimated
system to the desired state while the observer controls
the estimate to the actual state.

Linear Quadratic Regulator

For the Linear Quadratic Regulator (LQR), we will
consider the system

ẋ(t) = Ax(t) +Bu(t)

where A and B are constant and the system is con-
trollable. Now, we will consider a cost for controlling
the system, given by a cost functional J . The in-
tegrand of J is quadratic in x and u and is of the
form

J(u) =

∫ T

0

(
xTQx+ uTRu

)
dt+ x(T )TQfx(T )

where Q = QT ≥ 0, Qf = QT
f > 0 and R = RT > 0.

This is necessary since Q represents the cost of being

at a particular state and R is the cost of implement-
ing a control. If either of these matrices were nega-
tive it would represent being paid for implementing
a control or being at a state.

This representation of LQR is looking for a control
u(t) which will regulate the system at the origin such
that the cost is minimal. Here, x can be anything
we want to control to be zero, for instance, it could
be the error between the state and a state estimator
such as the one presented in the last section. This is
often used for trajectory tracking where we need to
control the system to another non-zero point, where
we can choose to make the cost proportional to the
distance between the estimate and the state.

The optimal control for this system is a linear state
feedback control law, similar to the ones presented
previously. In this case,

u(t) = (−R−1BTP (t))x(t)

where P (t) solves the riccati differential equation

−Ṗ (t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q

This equation is specified “backward in time”, that
is we start with a final condition and work backwards
to the initial condition. This leads us into the topic
of Model Predictive Control.

Model Predictive Control

Also called “receding horizon control”, Model Pre-
dictive Control, or MPC for short, works by solv-
ing a problem over a short planning horizon, taking
the first step and then recalculating the optimal con-
trol over the new planning horizon. This method
is not optimal, however it is usually less computa-
tionally taxing and also allows for small unexpected
disturbances without throwing out the whole control
scheme.

MPC is not guaranteed to be stable, however there
are different methods for applying the MPC so that
the resulting system will be stable. One of these
methods is to enforce an end-point for the system to
drive towards. This usually makes the system stable
and uses the ideas found in dynamic programming.
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Dynamic Programming

There are a number of methods that fall into the
category of dynamic programming, such as Dijkstra’s
shortest path algorithm, which finds the shortest or
cheapest path through a network. The main result
from dynamic programming that applies to Control
Theory is the Principle of Optimality, which states
that if the optimal path between points a and b passes
through a third point c, then the optimal path from
c to b is the same as the section of the optimal path
from a to b starting from c.

This principle is used when computing the minimal
cost of a functional similar to that of the LQR on the
previous page. By applying the ideas of dynamic pro-
gramming to a continuous system, we can derive the
Hamilton-Jacobi-Bellman equation for finding opti-
mal solutions to LQR. The HJB equation is

J∗
t ((x, t) + minu[g(x, u, t) + J∗

xa(x, u, t)] = 0

where J∗ is the minimal cost functional. All of
the techniques presented thus far are for determin-
istic systems with no noise, however stochasticity is
present in almost all physical systems, so it is impor-
tant to consider techniques for dealing with uncer-
tainty.

Linear Quadratic Gaussian and
Kalman Filtering

Many real world systems are imperfect and have in-
herent uncertainty in the measurements. We can sim-
ulate this by considering a modification to the stan-
dard linear system where we add some noise terms to
the state and the output. The system now becomes

ẋ(t) = Ax(t) +Bu(t) + ξx(t)

y(t) = Cx(t) +Du(t) + ξy(t)

where ξ is a random process, that is a sequence of
random variables. In the continuous time case, this
is similar to Brownian motion and other methods for
solving stochastic differential equations are required,
making the discrete time case much simpler.

The Kalman Filtering Algorithm works similarly
to the Luenberger Observer that was seen on the
previous page, however this time the matrix K de-
pends on time. The estimator for a simple case where
B = D = 0 this time is

x̂(n+ 1) = Ax̂(n) +K(n)(y(n+ 1)− CAx̂(n))

This is the Linear Minimum Mean Squared Error
(LMMSE) estimator for the state x(n). If the noise
terms are gaussian, then the LMMSE is also the op-
timal MSE estimator. This means that the Kalman
Filtering Algorithm will give the most accurate esti-
mates of the state when the measurements contain
gaussian noise.

Non-linear Control

All of the systems considered so far have been lin-
ear, which makes their analysis much easier, however
many real world systems are non-linear and some-
times a linear approximation is not sufficient. For
non-linear systems, many of the concepts such as sta-
bility, controllability and observability still mean the
same, however the equivalent results are more depen-
dent on the particular model.

The biggest difference between a linear and non-
linear system is the location and number of critical
points. Linear systems only have one critical point
at the origin, making stability an important topic,
however non-linear systems can have multiple critical
points which make the dynamics even more difficult
to control. It is also possible that non-linear systems
will exhibit properties such as periodic orbits, bifur-
cations and chaos, as well as finite escape time.

Conclusion

There are many topics and methods that fall into the
category of Control Theory, but what they all have
in common is that they are designed to solve real
world problems. Many of these are particularly use-
ful for engineers designing just about anything that
moves. The topics in Control Theory are important
for many reasons, most of all because they keep our
world stable.
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