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Abstract

In a broad sense, control theory is the behavioural study of dynamical systems with inputs. Control theory
does not truly belong to either mathematics or engineering exclusively, but rather, as an amalgam of various
components of both fields. Whilst it may exist in various forms and guises, the underlying principle remains
largely the same: The systems considered have both an input, and an output, and a controller manipulates
the inputs to a system to obtain the desired effect on the output of the system. These systems are gener-
ally modelled with respect to time, as they are representative of real physical problems, and are therefore
commonly represented by differential equations.

Overview

For centuries, the theory of control has been applied
to some of the greatest technological problems faced
by man, and has since provided results that have
crafted and shaped the world in which we live. From
the steam engine, to spacecraft, control theory has
been molded and warped to suit the requirements,
drawing from a rich background in mathematics and
engineering.

Control theory is studied in a variety of contexts,
each employing different tools and apparatus. One
shared feature however, is the formulation of the sys-
tem, or plant, itself. We have already stated that
problems are presented as differential equations, so
the basic system model is generally of the form

ẋ(t) = f
(
x(t), u(t), t

)
(1)

y(t) = h
(
x(t), u(t), t

)
(2)

where the state, which describes the system at any
given time, is represented by x ∈ Rn, the input by
u ∈ Rm, and the output by y ∈ Rk. Alternately, a
system may be modelled in discrete time by

x(n+ 1) = f
(
x(n), u(n), n

)
(3)

y(n) = h
(
x(n), u(n), n

)
(4)

Using these representations, we may now take a closer
look at some specific applications [1].

SISO Linear Systems

It was previously asserted that the systems under
consideration have both an input and an output. A

more refined definition in the current context would
be to refer to systems as a mapping of an input signal
to an output signal. A signal in this instance is essen-
tially synonymous with a function, and as such, may
be continuous time or discrete time. If the signals
are scalar, then the system is termed SISO, which
stands for single input single output. If the signals
are vectors, then the system is termed MIMO, short
for multi input multi output. The combinations SIMO
and MISO are also valid.

There are several types of systems that are of in-
terest, and some that are not, at least not for the
purposes of this paper. However, the properties of
linearity and time-invariance are of significant inter-
est, as these systems are widely used in electrical en-
gineering. For a system to be linear, an input of
the form α1u1(t) + α2u2(t) corresponds to an out-
put of the form α1y1(t) + α2y2(t), for αi ∈ R. A
system is time-invariant if for any time shift τ , the
output y(t−τ) corresponds to the input u(t−τ). Sys-
tems that satisfy these two properties are known as
Linear Time Invariant systems (LTI). Furthermore,
a general notion to consider is that of BIBO stabil-
ity, where BIBO stands for bounded-input bounded-
output. A system is BIBO stable if whenever the
input u satisfies ‖u‖∞ < ∞, the output y satisfies
‖y‖∞ <∞.

As we know, a system maps an input to an output.
But what if there is a desired output to which the
system did not map? Well, in order to avoid trivi-
alities, we assume that the system behaves in such
a way that u(t) 6= y(t). This resulting output may
be fed back into the system, or plant, to yield an-
other output, distinct from the previous. This idea
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of feedback is key to controlling the system. However,
given our current representation, this may be easier
said than done. Using integral transforms, it can be
shown that the output y(t) = H(s)est, where H(s) is
the Laplace transform of the impulse response, and is
important enough to control to warrant a name, the
transfer function.

The transfer function arises from the relation
y(t) = (u ∗ h)(t), which denotes a convolution be-
tween the input and the impulse response, and using
Laplace transforms, it can be shown that the out-
put polynomial Y (s) = U(s)H(s). Given that LTI
systems are often described by ordinary differential
equations, Laplace transforms become extremely use-
ful, as these systems are reduced to simple algebraic
problems. Note that the Z transform is used for dis-
crete time systems.

The control element of these systems really comes
into play with the introduction of the LTI controllers
G1 and G2. The entire system relating the output y
to an input reference r is then LTI, and may thus be
represented as in Figure 1 [2].

Figure 1: A plant H(s) is controlled by the blocks G1(s) and
G2(s).

Classic Engineering Control

Consider now a system with plant H(s) and control
components G1(s) and G2(s) as before, with input
signal R(s) and disturbances V (s) and W (s). The
system may be expressed in the form

Y = H
(
W +G1

(
R−G2(Y + V )

))

The controlled plant Hc(s) is defined as

Hc :=
HG1

1 +HG1G2

Using Hc, an alternate expression for Y may be de-
rived, and the error E := R−Y may expressed purely
in terms of the original system components above.

Designing the control components G1 and G2 leads
to considering a number of other factors, which will
be defined where necessary. Such factors include sta-
bility, robustness, regulation, tracking, and simplic-
ity.

Stability generally exists in two basic forms; the
ability of the system to be BIBO, and the ability
of the system to return to equilibrium after an ar-
bitrary displacement. These properties are generally
distinct for non-linear and time-varying systems, but
they are essentially equivalent for LTI systems. At
this stage, a system is stable if the real part of the
pole locations of a given transfer function are nega-
tive. The standard way to check for stability is to

solve the polynomial D(s) = 0 for H(s) = N(s)
D(s) and

determine whether all solutions lie in the left hand
complex plane. Should H(s) be unstable, one should
strive to design G1 and G2 such that Hc is stable.

As in the previous section, feedback is still the key
part of controlling systems. However, we introduce
a widely used controller known as the Proportional-
Integral-Derivative (PID) controller. The system is
parameterised by KP , KI and KD, and the controller
transfer function is given by

G1(s) = KP +
1

s
KI + sKD & G2(s) = 1

Based on the current rate of change, these values may
be heuristically interpreted in terms of time: P de-
pends on the present error, I on the accumulation of
past errors, and D is a prediction of future errors.

When considering a graphical method for con-
troller design, the most intuitive approach is loop
shaping. This essentially means adding poles and ze-
ros and the right system gain to achieve the desired
closed loop response, otherwise known as a Bode plot.
They are logarithmic plots of frequency response,
where gain and phase are displayed in separate plots.

II
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The drawback of Bode plots is that they are unable
to handle transfer functions with right-half plane sin-
gularities. However, this problem is circumvented by
Nyquist plots.

Nyquist plots are useful for analysis of closed loop
transfer functions, expressed as

Hc =
NHN1D2

DHD1D2 +NHN1N2

where the rational polynomials H, G1 and G2 are
expressed in terms of a numerator N(s) and a de-
nominator D(s). The concepts arise from Cauchy’s
principle of argument. The key idea is that since the
transfer function is complex, applying Cauchy’s prin-
ciple of argument to the open loop system transfer
function will lead to information about the stability
of the closed loop transfer function. Stability requires
that the roots of the denominator lie in the LHP as
they are poles of the closed loop system [2].

State Space Description & Con-
trol of Linear Systems

This section investigates state space representation,
which models a system as a set of input, output and
state variables related by first-order equations. It will
focus mainly on linear systems of the form

ẋ(t) = Ax(t) +Bu(t) (5)

y(t) = Cx(t) +Du(t)

for A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈
Rp×m, with a discrete time analogue reminiscent of
(3) and (4). For the SISO systems considered in the
previous sections, m = p = 1. This section introduces
the two regularity conditions, known as controllability
and observability.
Controllability describes the ability of an external

input to move the internal state of a system from
any initial state to any other final state in a finite
time interval. A state xs ∈ Rn is controllable if there
exists an input that transfers the state from xs to
the zero state in some finite time. A state xd ∈ Rn is
reachable if the converse holds. If the entire system is

controllable, then the pair (A,B) is controllable, and
for k ∈ Z, the controllability matrix is defined to be

conk(A,B) =
[
B,AB,A2B, . . . , Ak−1B

]
∈ Rn×mk

In contrast, observability is a measure for how well
internal states of a system can be inferred by knowl-
edge of its external outputs. Observability is the dual
of controllability, and as such, if the entire system is
observable, then the pair (A,C) is observable, with
observability matrix

obsk(A,C) =
[
C,CA,CA2, . . . , CAk−1]T ∈ Rpk×n

There exist a number of algebraic properties of these
matrices, the details of which are unnecessary for the
scope of this paper, with the exception that the spec-
ified matrices have full rank iff the state space model
is continuous and time-invariant.

The linear state feedback law is denoted

u(t) = Fx(t) + r(t)

for some F ∈ Rm×n and some external input vector
r(t) ∈ Rm, known as the reference.

In general, x(t) is unobservable, so it’s quite useful
to design a system with state x̂(t) so that x̂ is an
estimate of x. This is generally known as the Luen-
berger observer. For control purposes the output of
the observer system is fed back to the input of both
the observer and the plant through the gains matrix
K ∈ Rn×p. The system is designed such that

˙̂x(t) = Ax̂(t) +Bu(t) +K (y(t)− ŷ(t))

ŷ(t) = Cx̂(t) +Du(t)

The input of the Luenberger observer system is the
input of the original system together with the output
of the system.

State feedback and observers are generally com-
bined into a controlled system that has an observer
for generating x̂(t) and then uses it as an input to a
state feedback controller [4]. Using the resulting input
u(t) = F x̂(t)+r(t) with the error e(t) = x(t)− x̂(t),
the resulting system may be expressed in the form[
ẋ
ė

]
=

[
A+BF −BF

0 A−KC

] [
x
e

]
+

[
B
0

]
r

y =
[
C +DF −DF

] [ x
e

]
+Dr

III
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Adaptive Control

When dealing with complex systems that have un-
predictable parameter deviations and uncertainties,
the fundamental requirement is a control law that
adapts itself to a changing condition. This is known
as adaptive control, and is illustrated in Figure 2. The

Figure 2: A more complicated system than before.

theory is inherently non-linear, and ultimately stems
from Lyapunov stability theory. Parameter estima-
tion is the foundation of adaptive control, where the
most frequent methods of estimation are recursive
least squares and gradient descent. These both pro-
vide update laws, laws which are used in real time to
modify the estimates [3].

Linear Quadratic Regulator &
Model Predictive Control

The previous sections were largely influenced by engi-
neering, and engineering related mathematics. This
section and those that follow draw largely from pure
mathematics, in particular, the theory of differential
equations (as in the last section also) and the calculus
of variations.

Optimal control is concerned with operating a dy-
namical system at minimum cost. The linear struc-
tures (1) and (3) are still used, and the cost is de-
scribed by a quadratic functional, given by

J(u) = xT (tf )Q(tf )x(tf ) (6)

+

∫ tf

t0

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt

where the time horizon may be infinite, with real ma-
trices where Q(t) � 0, Q(tf ) � 0 and R(t) � 0.
The discrete analogue shares the same idea, but is
expressed as a sum, rather than an integral. This
cost may thought of as a sum or series of deviations
of key measurements from their desired values, and
the algorithm determines the controller settings that
minimise the undesired deviations. This is generally
known as the linear quadratic regulator.

It can be shown that the optimal control is a linear
state feedback control law, and is expressed as

u∗(t) =
(
−R−1(t)BT (t)P (t)

)
x(t) (7)

where the n×n matrix P (t) solves the Riccati matrix
differential equation

−Ṗ (t) = AT (t)P (t) + P (t)A(t) (8)

− P (t)B(t)R−1(t)BT (t)P (t) +Q(t)

In the case that tf = ∞, P (t) is replaced by the
steady state solution P , and (8) becomes an algebraic
equation of constant matrices with Ṗ (tf ) = 0.

The theory of model predictive control has its basis
in that of LQR, but operates on an iterative short
time horizon [t, t+ T ]. An extemporaneous calcula-
tion is used to explore state trajectories that emanate
from the current state and determine, through the
Euler-Lagrange equations, a cost-minimising control
strategy until time t + T [5]. Only the first step of
the control strategy is implemented, the calculations
are repeated from this new state, and the process is
repeated, as illustrated in Figure 3.

Dynamic Programming

Dynamic programming was the USA’s answer to the
control problems faced by space exploration in the
1950s. It was developed by Richard Bellman and is a
method which may be applied to computer program-
ming as well as mathematical optimisation. In either
case, it normally refers to simplifying a decision by
breaking it down into a sequence of sub-decisions in
a recursive manner.

Bellman’s Principle of Optimality describes the
method of this simplification as “an optimal policy

IV
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Figure 3: A block diagram representing the implementation
of model predictive control.

with the property that whatever the initial state and
initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state re-
sulting from the first decision.”

In practice, this is achieved by defining a sequence
of value functions Vi(y) representing the state at
times i = 1, . . . , n. At the final time n, Vn(y) is the
value obtained in state y, and the values at Vi(y) for
i = n − 1, n − 2, . . . , 2, 1 are determined by working
backwards, using the recursive relationship known as
the Bellman equation. For all but the first time,
Vi−1(y) is calculated from Vi(y) by maximising a
function of the gain form decision i− 1 and the func-
tion Vi at the new state of the system if the decision
is made. This operation yields Vi−1 for those states,
since Vi has already been calculated. The initial state
of the system V1 is the optimal solution.

The study of dynamic programming resulted in
what is known as the Hamilton-Jacobi-Bellman equa-
tion, a partial differential equation central to optimal
control theory. The process described by the state
equation ẋ(t) = a

(
x(t),u(t), t

)
is to be controlled to

minimise the performance measure

J(x(t),u(t), t) = h
(
x(tf ), tf

)
(9)

+

∫ tf

t0

g
(
x(t),u(t), t

)
dt

Now setting J∗(x, t) = minJ(x, t) for t ∈ [t0, tf ],
subdividing the interval, and taking an appropriate
Taylor series expansion, they HJB equation may be
derived to be

0 = J∗t +H
(
x(t),u∗

(
x(t), J∗x , t

)
, J∗x , t

)
(10)

where the Hamiltonian is defined to be

H
(
x(t),u(t), J∗x , t

)
= g
(
x(t),u(t), t

)
(11)

+ J∗Tx
(
x(t), t

)
ẋ(t)

and the Hamiltonian appearing in (10) is the min-
imum of (11) over u(t). The solution of the HJB
equation yields a system of ordinary differential equa-
tions K(t), which describe the nature of the optimal
control function u∗(t) [6].

Pontryagin’s Minimum Principle

Whilst the USA had Bellman’s Dynamic Program-
ming in the space race, the USSR had Pontryagin’s
Minimum Principle, a technique developed by Lev
Pontryagin for determining the best possible control
of a dynamical system from one state to another, par-
ticularly in the presence of state or input constraints.

The goal here is to employ techniques from the cal-
culus of variations to determine an admissible control
u∗(t) that causes the system ẋ(t) = a

(
x(t),u(t), t

)
to follow an admissible trajectory x∗(t) that min-
imises the performance measure (9). Through the
construction of a function called the Hamiltonian,
given by

H
(
x(t),u(t),ψ(t), t

)
= g
(
x(t),u(t), t

)
+ψT (t)ẋ(t)

necessary conditions for optimality are derived. Here,
ψ(t) are known as costate equations, which arise from
constraints, and are derived from Lagrange multipli-
ers used in the calculus of variations.

For an optimal control u∗(t), an optimal state
trajectory x∗(t) and an optimal costate trajectory
ψ∗(t), Pontryagin’s minimum principle essentially
states that

H
(
x∗(t),u∗(t),ψ∗(t), t

)
≤ H

(
x∗(t),u(t),ψ∗(t), t

)
V
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for t ∈ [t0, tf ] and all u ∈ U , where U is the domain
over which the Hamiltonian must be minimised. It
may be shown that the three necessary conditions for
optimality are

ẋ∗(t) = Hψ ψ̇
∗
(t) = −Hx 0 = Hu

for all t ∈ [t0, tf ]. Ultimately, by substituting the op-
timal control in terms of the costates, the problem is
reduced to a system of n equations with n unknowns.
This allows the costate equations themselves to be
determined, which leads to determining the optimal
control function. The ultimate goal of PMP is the
same as that of dynamic programming, which is de-
termining the optimal control function u∗(t) [6].

Linear Quadratic Regulator Re-
visited

Both dynamic programming and the calculus of vari-
ations may be used in deriving the LQR results stated
before. Both methods achieve this by applying (5)
and (9) to their respective Hamiltonian systems.

Dynamic programming achieves this by construct-
ing a Hamiltonian of the form

G =
1

2
xT (t)Q(t)x(t) +

1

2
uT (t)R(t)u(t)

+ J∗Tx
(
A(t)x(t) +B(t)u(t)

)
whereas the calculus of variations and PMP achieve
this by constructing an alternate Hamiltonian of the
form

H =
1

2
xT (t)Q(t)x(t) +

1

2
uT (t)R(t)u(t)

+ψT (t)A(t)x(t) +ψT (t)B(t)u(t)

It can be shown that both of these approaches yield
the derivation of both (7) and (8) [6].

Conclusion

The different areas of control theory covered in this
paper are but the tip of the iceberg. The topics of
discussion were all developed prior to the 1970s, and

since then, the theory of control has evolved diver-
gently to encompass the fields of economics, com-
puter science, and cryptographic systems amongst
others. Despite the various approaches, the ultimate
objective of control has been with varying degrees of
success, whilst leaving room for improvement or re-
finement.

VI
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