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Abstract

Control theory covers many concepts and tools widely used in engineering to design robust, optimal and stable
systems. However the theory, being inspired by our interaction with nature, results in many intriguing theoretical
results. In this paper I survey the �eld by covering topics such as system linearisation, frequency space representations,
cost minimisation (Euler and Hamilton equations) and stochastic conditional expectation.

1 State Space

In general we deal with a multi-valued system x, and multi-valued output, y. We use the latter to deduce information
about the former, so that we can e�ectively control it with a multi-valued input, u. The system changes in accordance
with its current state, the input, time and stochastic noise. At an introductory level, we assume noise is negligible, and
that all relations are linear with time being irrelevant. That is, we assume local linearisation is possible using the Jacobian
(derivative). We start with vector equations

ẋ = f(x, u, ξx, t)

y = g(x, u, ξy, t)

where ξ is the noise, and this becomes, after a shift,

ẋ = Ax+Bu

y = Cx+Du

with the matrices given by

A = ∂xf

B = ∂uf

C = ∂xg

D = ∂ug

ξx = ξy = 0

A is square though the rest need not be. Of course, systems in which the attempted linearisation gives zero matrices
are suspicious, since the non-linearity dominates in that case. Note we have also assumed no memory; i.e. system depends
only on current state. This standardisation is useful as a standard set of algorithms exist for solving this (A,B,C,D)
system.

Note higher order di�erential equations are reducable to �rst order by using

(
x
ẋ

)
as x, etc.

All equations can be written analogously in the discrete case, too. In that case we write equations for (xn+1, yn+1)
rather than the derivatives. That is, conventionally we don't use di�erence equations.

As is well known in pure maths, the solution to the linearised problem with initial conditions is guaranteed to exist
via Picard iterations. i.e.

xn+1(t) = x0(t) +

ˆ t

dτ (A(τ)xn(τ) +B(τ)u(τ))

By recursion with time invariance we obtain
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x = eAtx0 +

ˆ t

dτeA(t−τ)Bu(τ)

Exponentiating a matrix is de�ned by the usual exponential Taylor series. The second term is a convolution, eAt ∗Bu.
This hints that frequency space may be a useful representation of the system.

But �rst a few notes regarding the matrix exponentiation. We have the following equalities:

eAt = PeJtP−1 =

∞∑
i=0

(tA)
i

i!
=

n∑
i=0

Aie
λit = L−1

(
(s−A)

−1
)

The �rst equality uses the Jordan normal form (JNF) J , and transition matrix P (which takes JNF space to real
space). Exponentiating the JNF is easy (block diagonal), and converting to JNF is also easy, versus calculating the second
equality.

The third equality means a matrix can be split up into its modes Ai. There are n such modes, which is the the state
space dimension. λi are the eigenvalues of A. This representation follows from the Cayley-Hamilton theorem; that the
eigenvalue equation is true for the matrix itself.

The fourth equality shows that Laplace transforms (and the inverses) can be performed on matrix expressions. This is

sometimes the easiest route for calculating the exponential if a concrete prediction is required. For scalars, L−1
(

1
s−α

)
=

eαt is a well known result.

Asymptotic stability is achieved i� all e-values have negative real part. This is de�ned as a guarantee that any initial
condition will eventually lead to zero. A temporary input (say transient noise) can be seen as such an initial state.
Stability alone requires just that the e-values have non-positive real part, and that any e-value with zero real part has the
same geometric and algebraic multiplicity. Geometric multiplicity is the number of e-vectors corresponding to the e-value
(what physicists sometimes call degeneracy). Algebraic multiplicity is how many times the e-value appears in the total
e-value equation. The latter is always less than or equal to the former. If it is less then instability occurs due to too much
geometric multiplicity terms (polynomial instability, rather than exponential).

Often an engineer wishes to make the system stable by moving the e-values to the LHP (left-half plane). This can be
achieved in this linearised regime with the use of feedback controllers. In this case, we set

u = Fx+ other input

where F is the linear feedback controller, which can be represented as a matrix. This means A→ A+BF , and so the
F must be de�ned so as to make the e-values of this new matrix are in the LHP.

There is a theorem which states it is possible to design such an F i� con(A,B), the controllability matrix, is full rank
(i.e. rank n). The controllability matrix is de�ned by

con (A,B) =
(
B AB A2B . . . An−1B

)
If it is not full rank, that means some subspace of state-space will be uncontrollable (we are unable to reduce it to zero

with feedback). There is a systematic algorithm for generating F if the controllability matrix is full rank (see Ref. ?).

2 Frequency Domain

Rather than analysing a scalar system of high order as a vector system of single order, we can alternatively model just
the scalar system. In this pursuit we have a plant H and control system (G1, G2). The controlled plant is G1H

1+G1G2H
(this

is quickly derived from the �gure). Negative feedback G2 is usually set at a constant.
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One simple application of this is to control the gain of a transistor. If the transistor is maxed out, the ampli�cation
will be very choppy. H is the transistor gain and the controls are voltage dividers. Assuming the G1H is su�ciently high,
G1G2H � 1, then the controlled transistor is just 1

G2
. So we control the transistor gain with the smallness of G2.

What is this H? It is known as the transfer function of the system and equals L(h), where h is the impulse response.
That is, the response to a sharp input (δ input). The (A,B) system from before can be viewed simply as a convolution
acting on the input. This is represented in the �gure as a multiplication, because of the convolution theorem with frequency

transforms (convolutions are equivalent to multiplication in frequency space). Hence L−1
(

G1H
1+G1G2H

)
gives us the total

output. (G1, G2) need to be designed so that the poles of the controlled plant are in the LHP, because of the laplace
inverse (in the simplest case) is eλit.

One of the oldest and most commonly used controllers is the PID (proportional, integral, derivative). This one uses
constant G2 (a subsystem which only changes an input δ by a constant), and a G1(s) such that

G1 = P +Ds+
I

s

Note that this can be easily made equivalent to a state space representation (A+BF,B) with n = 3. B is G1 and
F is G2. However the frequency space representation is very useful because it allows us to conduct frequency analysis.
This often involves Bode and Nyquist plots. Bode, for example, plots the magnitude and phase of the controlled plant
versus the frequency of a sinusoidal input. Where this peaks we see which frequencies of noise (input) the system is most
sensitive to. The phase tells us the time-lag between input and its a�ect on the system state. Space does not permit a
longer discussion.

Another useful property is the �nal value theorem,

lim
s→0

sH = h(∞)

lim
s→∞

sH = h
(
0+
)

The �rst formula can be used to �nd the steady state error if we desire a certain input to be reduced to zero. For
instance, if we have a constant input to have no a�ect, we need sHc → 0 as s → 0, where Hc is the controlled plant
transfer function. Note in time domain we can convolve h with a step input, which gives us important stability parameters
such as the rise time, settling time, and overshoot.

3 Observations

Going back to the state space representation; there is another issue. We cannot measure x directly, but only y. How,
then, do we estimate x? We call this estimation the Luenberger observer, x̂. We generate it by guessing an initial value,
and then setting

˙̂x = Ax̂+Bu+K(y − ŷ)

ŷ = Cx̂+Du

ŷ is the predicted output were we correct in our initial guess. K tells us how to alter the guess in order to determine
the correct state. Is a state always observable? That is, can we always generate a K that will always take any output and
produce an asymptotically accurate Luenberger observer? The answer is yes i� the observability matrix is full rank. The
obs(A,C) matrix is

obs (A,C) =


C
CA
CA2

. . .
CAn−1


where this matrix has the submatrices embedded into it. Again there is are systematic algorithms for generating the

K in the discrete and continuous cases when the obs matrix is full rank.

An important point is that there is an independence between controlling the system and observing it. When both F &
K are in our system, they do not a�ect each other's success, and so may be designed separately. K becomes the Kalman
�lter used in stochastic modelling when the ξ are introduced.
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4 Optimality

Thus far we have considered only predictability, stability, controllability and observability. But what if there is a cost to
be minimised in a given system or problem? There are many examples, such as that the electrons in a piece of metal move
so as to minimise the amount of heat produced. One way of representing the problem is to write

J(x(t), t) = JT +

ˆ T

t

dτg(x(τ), u(τ), τ)

where J is the total optimum cost, JT is the cost at the end-point, and g is the cost per unit time, and u is the
optimum input. g may depend on the trajectory the system is taking, and the input at that time.

There is an important principle, the Bellman principle of optimality. It states that the minimum cost at a future time
is the minimum cost now less the cost to get to that time with the optimum input. The goal is to use that principle to
obtain an equation for what u should be.

One approach is to derive the HJB equation (Hilbert-Jacobi-Bellman). A simple derivation is to simply use the chain
rule in di�erentiating the cost w.r.t. (with respect to) time:

−g = Jt + Jxẋ

Both sides are the total time derivative of J . The minus is just due to how we've represented the cost. One common
way to write it is as

0 = Jt + min
u
H(x, u, t)

H = g + Jxẋ

The H here is the Hamiltonian, and corresponds exactly to the energy function known to physcists.
The HJB formulation is complicated by two things; it does not do well with higher dimensional trajectories, and it

involves the overall cost J . The calculus of variations (Euler's equation, or Lagrange's equation to physicists) does not
su�er from these de�cits. In that formulation we do not minimise J directly, because there are constraints that must be
satis�ed in higher dimensions (e.g. speed and position are related to each other). The constraint equation we write as

ẋ = a(x, t)

Then we minimise the integral over g + p · (a− ẋ), where p(t) is the momentum vector (can be set exactly to the
quantity in physics). That is, momentum is just a set of Lagrange multipliers. Minimising the composite quantity is
a necessary condition. If it were not minimised, one could vary the trajectory without violating the constraint yet still
minimise J further. By �varying� trajectory x by δx (a small change at each time that leaves the path continuous), one
can easily derive the Euler equation via integration by parts of δJ :

∂xgc = dt∂ẋgc

gc = g + p · (a− ẋ) = constrained marginal cost

dt is the scalar total time derivative, and ∂x & ∂ẋ are vector derivatives. If there are n dimensions, and m constraints,
we now have n + m equations (Euler gives n and the constraints the other m) which yield the m unknown momentum
components, as well as the n unknowns in the optimum trajectory.

Note it is necessary in �eld theory (e.g. the gravitational �eld) to have an optimum scalar �eld (in the physics sense).
That is, one can have multiple �time� variables if you want to optimise a surface or volume manifold, rather than just a
linear trajectory.

How does one obtain the Hamiltonian? This is just

H = g + p · a
ẋ = ∂pH

ṗ = −∂xH

The above are Hamilton's equations, and fully encapsulate Euler's equation and the constraints (this is quickly derived).
This abstract but direct connection between Hamiltonian and Lagrangian mechanics is often not taught to physicists. To
give a couple examples, the most famous Lagrangian (g) is that for motion of a beam of light, 1. A more complex example
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is that to derive Newton's laws one uses the di�erence between kinetic and potential energy as the Lagrangian. This is
easily derived from the �rst of the three equations just listed. Note that the input is obtained via

∂uH = 0

which is obtained via HJB or direct variation w.r.t. δu. The formalism is often used with the form

g = xTQx+ uTRu

withQ non-negative (all e-values non-negative) and R strictly positive. This problem is known as LQR (linear quadratic
regulator). The regulation is via the cost, which is quadratic. The solution for u is linear in x. The feedback matrix is
given by the solution of a Riccati equation, which can be directly derived from Hamilton's equations. A Riccati equation
is a �rst order ODE which depends quadratically on the dependent function.

Physicists may �nd this form useful if we ignore the R because then it corresponds exactly to a simple harmonic
oscillator (quadratic energy and kinetic energy). Alternatively x may be viewed as a �nite dimensional wavefunction (i.e.
one de�ned over �nite discrete states). The fact that momentum seems to correspond to the Jx from above (in HJB)
hints at the correspondence between momentum and di�erentiation (in quantum mechanics, the momentum operator in
position space corresponds to −i∂x).

5 Stochastic Noise

If we introduce (ξx, ξy) into our deterministic (A,B,C,D) system we must solve an optimality problem to get the condi-
tional expectation of the Luenberger observer given all the previous output, which is itself stochastic. The �cost� is de�ned

as the MSE (mean square estimation). That is, E
(
|x− x̂|2

)
. In the discrete case, the solution for x̂n is just E(xn, Y (n)),

where Y (n) is all the output up to step n. In the simplest case we assume all the noise is independent of all the other
noise. i.e. Σxy = 0 where Σxy is the covariance of the x & y noise.

The solution for the Luenberger K is obtained from a Riccati equation (see Ref. 3 for derivation). This is called the
Kalman �lter in the LMMSE case (linear minimum MSE). Linear because the ODEs involved are linear.

6 Hybrid Systems

Suppose we have a continuous system, such as the temperature in a room. But there is a discrete component to the
system, such as the digital temperature setting on an air-conditioner. In this case we have a discrete and continuous state
space. i.e. x has two components, temperature and temperature setting. The former is in R, while the latter only in N,
and so a matrix ODE makes no sense. Optimising, controlling and predicting such hybrid systems forms an area of active
research.

7 Conclusion

It is clear that control theory covers many topics which are of fundamental importance in engineering and science. The
subject requires an understanding of many areas of mathematics; such as statistics, calculus and linear algebra. Many
of the proofs involved are ingenious, and control theory provides a vital link between many applied �elds and the pure
mathematics from which they borrow ideas.
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