MATH4406 (Control Theory) Quiz 1 (Units 2 and 3) - August 23, 2012.
 Prepared by Yoni Nazarathy

Quiz duration: 40 minutes.
An input output system (plant) follows this differential equation:

$$
\dot{y}(t)+c_{1} y(t)=c_{2} u(t)
$$

with $c_{1}, c_{2} \in \mathbb{R}$.

1) Treating $u(\cdot)$ as the input and $y(\cdot)$ as the output, write the transfer function of the plant.
2) For what values of c_{1}, c_{2} is the plant strictly stable?
3) What is the step response of the plant (i.e. the output resulting from input $\mathbf{1}(t))$?

Consider now a second plant with transfer function:

$$
H(s)=\frac{1}{\frac{c_{2}}{2}+s}
$$

5) The output signal of the first plant is fed into the second plant to form a combined plant. Assume that $c_{1}, c_{2}>0$. Describe the combined plant as a second order system:
5a) What are the parameters, ζ and ω_{n} ?
$5 b)$ Does it have resonance in any frequencies?
6) Assume that the plant is now controlled in closed loop with a PD compensator with parameters $K_{P}=\frac{1}{2}$ and $K_{D}=2$. Consider now the controlled system:
6a) Is there a steady state error to the step response or is it zero? If there is a steady state error, explain briefly why? Further, suggest a modification to the controller that will remove the error.
$6 \mathrm{~b})$ For values of $c_{1}, c_{2}=1$ is there a resonant peak? If so, explain briefly (1-3 lines) what this means.
6c) Assume that in the same controlled system, there is a pure delay of 3 time units on the feedback loop. I.e. the signal value that is subtracted from the reference at time t_{0} is the output of the system at time $t_{0}-3$. Write the closed loop transfer function.
(Bonus) Return back to the single original plant. Set $c_{1}, c_{2}=1$. Let now $y[k]$ be a discrete time sequence of samples at times $k=0,1,2, \ldots$, of the output resulting from the input $u(t)=\mathbf{1}(t-1)$ (and $y(0)=y[0]=0)$. Write an expression for $y[k]$.

Good Luck.

