Solving constrained LQR using MPC

Erjen Lefeber

Unconstrained LQR

Problem:

$$
J=\min _{u(k)} \sum_{k=0}^{\infty} x(k)^{T} Q x(k)+u(k)^{T} R u(k)
$$

subject to

$$
x(k+1)=A x(k)+B u(k) \quad x(0)=x_{0}
$$

Assumptions:

- R positive definite
- Q positive semi-definite
- (A, B) stabilizable
- (C, A) detectable $\left(Q=C^{\top} C\right.$ with rank $C=$ rank $\left.Q\right)$

Unconstrained LQR

Solution:

$$
u(k)=-F x(k)
$$

where

$$
F=\left(R+B^{T} P B\right)^{-1} B^{T} P A
$$

and P the unique positive definite solution to the discrete time algebraic Riccati equation (DARE)

$$
P=Q+A^{T}\left(P-P B\left(R+B^{T} P B\right)^{-1} B^{T} P\right) A
$$

The resulting costs, starting in $x(0)=x_{0}$ is given by

$$
J\left(x_{0}\right)=x_{0}^{\top} P x_{0}
$$

Constrained LQR

Problem:

$$
J=\min _{u(k)} \sum_{k=0}^{\infty} x(k)^{T} Q x(k)+u(k)^{T} R u(k)
$$

subject to

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k) & x(0)=x_{0} \\
u(k) & \in \mathbb{U}=\left\{u \mid K_{u} u \leq k_{u}\right\} & \\
x(k) & \in \mathbb{X}=\left\{x \mid K_{x} x \leq k_{x}\right\} &
\end{aligned}
$$

with $k_{u}>0, k_{x}>0$, i.e. $0 \in \mathbb{U}$ and $0 \in \mathbb{X}$.

Constrained LQR

Let $F=\left(R+B^{T} P B\right)^{-1} B^{\top} P A$ with $P=P^{T}>0$ solution to the DARE.

Define a terminal set $\mathbb{X}_{T} \subset \mathbb{X}$ satisfying

$$
(A-B F) \mathbb{X}_{T} \subset \mathbb{X}_{T} \quad-F \mathbb{X}_{T} \subset \mathbb{U}
$$

Constrained LQR

Consider the following MPC-problem:

$$
J=\min _{u(0), u(1), \ldots, u(N-1)} x(N)^{T} P x(N)+\sum_{k=0}^{N-1} x(k)^{T} Q x(k)+u(k)^{T} R u(k)
$$

subject to

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k) \\
u(k) & \in \mathbb{U} \\
x(k) & \in \mathbb{X} \\
x(N) & \in \mathbb{X}_{T}
\end{aligned}
$$

Let $u^{*}(0), u^{*}(1), \ldots, u^{*}(N-1)$ denote the solution to this QP (assuming it is feasible for $x(0)=x_{0}$).
Then $u^{*}(0), u^{*}(1), \ldots, u^{*}(N-1), u^{*}(k)=-F x(k)$ for $k \geq N$ is a feasible solution to the constrained LQR problem.

Constrained LQR

Typical choice for \mathbb{X}_{T} : maximal output admissible set, see [GT91].

Typical choice for $N\left(x_{0}\right)$: such that $x *\left(N\left(x_{0}\right)\right) \in \mathbb{X}_{T}$ for MPC-problem without the constraint $x(N) \in \mathbb{X}_{T}$.

Also possible to determine upperbound for $N^{*}\left(x_{0}\right)$ for given x_{0}, or initial state set, see e.g. [ZL08]

固 E. G. Gilbert and K. T. Tan.
Linear systems with state and control constraints: the theory and application of maximal output admissible sets.
IEEE Transactions on Automatic Control, 36:1008-1020, 1991.
X. Zhao and Z. Lin.

On the horizons in constrained linear quadratic regulation. Automatica, 44:3107-3112, 2008.

