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1 About

We have spent plenty of time in the course dealing with systems of the form:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

and
x(n+ 1) = Ax(n) +Bu(n)

y(n) = Cx(n) +Du(n)
. (1)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. The focus was mostly on
the continuous time version

(
u(t), x(t), y(t)

)
. In unit 4 we saw how to design a state

feedback controller and an observer and in later units we dealt with optimal control of
such systems.

We now augment our system models by adding noise components. To the first
equation we shall add disturbance noise (ξx) and to the second equation we shall add
measurement noise (ξy). This yields:

ẋ(t) = Ax(t) +Bu(t) + ξx(t)
y(t) = Cx(t) +Du(t) + ξy(t)

or
x(n+ 1) = Ax(n) +Bu(n) + ξx(n)

y(n) = Cx(n) +Du(n) + ξy(n)
.

One way of modeling the noise is by assuming that ξ(·) is from some function class
and assuming that in controlling the system we have no knowledge of what specific ξ(·)
from that class is used. This is the method of robust control. Alternatively, we can think
of ξ(·) as a random process(es) by associating a probability space with the model. We
shall focus on the latter approach.

The level of mathematical care that is needed for handling the continuous time case
is beyond our scope as it requires some basic understanding of stochastic calculus (e.g.
Brownian motion, Stochastic Differential Equations, Ito’s formula etc...). We shall thus
focus on the discrete time case which is simpler in that the random processes (es) are
discrete time sequences of random variables. Luckily, the methods that we shall survey
(Kalman filtering and Linear Quadratic Gaussian (LQG) optimal control) are often
applied in practice in discrete time on digital computers. So understanding the discrete
time case is both pedagogically simpler and often of greater practical interest.

In treating ξx(n) and ξy(n) as discrete time random processes we shall assume they
are each i.i.d. (independent and identically distributed) sequences of zero-mean Gaussian
(normal) random vectors with covariance matrices Σx and Σy respectively (we review
this below). In many physical situations this is actually a practical assumption:

1



• Having the noise of one time slot independent of the disturbance at other time
slots is the practical situation (especially for short lived disturbances). (This is
the first ‘i’ of i.i.d.).

• Having noise of a constant statistical law makes sense for time invariant systems.
(This is the second ‘i’ of i.i.d.).

• Having noise that have a mean of 0 implies there is no general direction of the
disturbance.

• Having noise that follows the Gaussian distribution is sensible if the noise is a
summation of many small factors. In this case the central limit theorem implies
that the noise distribution is Gaussian.

Note 1: We are not restricting individual coordinates of ξ(n) (at any time n) to be
independent.

Note 2: Note that even though the noise terms are i.i.d., x(·) is no longer an i.i.d.
process (it will be in the pathological case in which A = 0 and B = 0).

Note 3: In many situations the variance (covariance matrix) of ξ can be modeled
from “first principles” just as the (A,B,C,D) model is. This is the case of noise is due
to well understood electromagnetic effects as well as due to rounding errors appearing
in digital control.

What will we do with the stochastic model?

1. State estimation (Kalman filtering): For the deterministic system, we saw
the Luenberger observer:

x̂(n+ 1) = Ax̂(n) +Bu(n) +K
(
y(n)− ŷ(n)

)
.

The Kalman filter is used to do essentially the same thing, yet now taking into
control the fact that now x(·) is a random process.

2. Optimal control (LQG): For the deterministic system we saw how to design a
state feedback control such that,

∞∑
k=0

x′(k)Qx(k) + u′(k)Ru(k),

is minimized (if Q ≥ 0 and R > 0). Now with random noise, x(·) is a random
process. Further if we use a state feedback control then u(·) is random process.
We are thus interested in finding a control law that minimizes,

E
[ ∞∑
k=0

x′(k)Qx(k) + u′(k)Ru(k)
]
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We will have time to touch LQG only briefly and focus mostly on the Kalman filter.
A practical note: The celebrated Kalman filter is implemented in a variety of

engineering applications dealing with tracking, positioning and sensing. It is a good
thing to know about outside the scope of control also.

2 Gaussian Random Vectors

We briefly review/summarize Gaussian random vectors. We begin with Gaussian scalars:
A random variable, X is said to have a Gaussian (normal) distribution with a mean of
µ and a variance of σ2 > 0, denoted, X ∼ N(µ, σ2) if,

P
(
a ≤ X ≤ b

)
=

∫ b

a

1

σ
√

2π
e−

1
2

(x−µ
σ

)2dx.

We have,

E [X] =

∫ ∞
−∞

x
1

σ
√

2π
e−

1
2

(x−µ
σ

)2dx = µ.

Further,

V ar(X) =

∫ ∞
−∞

(x− µ)2 1

σ
√

2π
e−

1
2

(x−µ
σ

)2dx = σ2.

We now consider the random vector X = [X1, . . . , Xn]′. Assume momentarily that each
of the random variables Xi follows some arbitrary distribution. The expectation of X is
the vector,

E [X] =

 E [X1]
...

E [Xn]

 .
Similarly, if X is a matrix of random variables than E [X] is the matrix of the expecta-
tions of the individual entries.

This leads to the important (for our context) definition of the covariance matrix of
a random vector X.

Cov(X) = E [
(
X − E [X]

)(
X − E [X]

)′
].

Note that Cov(X) is an n× n symmetric matrix with individual elements:(
Cov(X)

)
i,j

= Cov(Xi, Xj).

Reminder: For two scalar random variables Z and W ,

Cov(Z,W ) = E [
(
Z − E [Z]

)(
W − E [W ]

)
] = E [ZW ]− E [Z]E [W ].
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Notes: (i) If Z = W then Cov(Z,W ) = V ar(Z). (ii) If one (or both) of the random
variables are zero mean then the covariance is simply E [ZW ]. (iii) If the random
variables are independent then the covariance is 0.

The covariance matrix thus records the variance of the random variables on the
diagonal and the covariances on the off-diagonal entries.

Exercise 2.1 Assume you are given an n dimensional random variable X and an m×n
matrix A. Define Y = AX. What is the mean vector of Y in terms of that of X? What
is the covariance matrix of Y in terms of the covariance matrix of X?

We are now in a position to define (one of several equivalent definitions) Gaussian
random vectors: We say the random vector X is Gaussian with mean vector µ and
covariance matrix Σ, denoted X ∼ N(µ,Σ) if,

P
(
a1 ≤ X1 ≤ b1, . . . , an ≤ Xn ≤ bn

)
=

∫ b1

a1

. . .

∫ bn

an

φ(x1, . . . , xn)dx1 . . . dxn,

with the density function being,

φ(x1, . . . , xn) =
1

(2π)n/2det(Σ)1/2
e−

1
2

(x−µ)′Σ−1(x−µ).

It can be calculated that in this case,

E [X] = µ, Cov(X) = Σ.

Further, the marginal distribution of each of the Xi’s is normal.
Notes: (i) Distributions of Gaussian random vectors are characterized by their mean

vector and covariance matrix. (ii) If two coordinates are non-correlated (covariance 0)
then they are independent. (iii) Linear transformations of Gaussian random vectors yield
random vectors that still follow the Gaussian distribution with mean and covariance as
given by Exercise 2.1.

The final property that we shall overview for Gaussian random vectors deals with
conditional distributions. Partition X ∼ N (µ,Σ) into Xa and Xb and have,

µ =

[
µa
µb

]
. Σ =

[
Σa Σab

Σ′ab Σb

]
.

We have that the distribution of Xa conditional on Xb = xb is

N
(
µa + ΣabΣ

−1
b (xb − µb), Σa − ΣabΣ

−1
b Σ′ab

)
. (2)

This is useful for estimating Xa based on measurements of Xb. A sensible estimate in
this case is, µa + ΣabΣ

−1
b (xb − µb). As a “sanity check” of this formula observe that if

Xa and Xb are independent then Σab = 0 and thus the estimate is simply µa.
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3 Minimum Mean Square Estimation

Consider now the general situation in which you observe the value of a random vector
Xb = xb and would like to use it to estimate the value of Xa. Here we model Xa and Xb

as two random vectors (measurable functions) on the same probability space and hope
that they are somewhat dependent (i.e. knowledge of Xb can give us some information
on Xa). We are thus looking for a function f(·) such that f(Xb) is a “good” estimate on
Xa. There are all kinds of definitions of “good” – here is perhaps the most popular one:

min
h

E
[
||Xa − h(Xb)||2

]
, (3)

where || · || is the Euclidean norm and the minimization is over all h(·) in some function
class whose definition we leave vague for the purpose of this informal discussion. Note
that the expectation is with respect to both Xa and Xb. Does this criterion make sense?
Yes, of course! Further, it turns out to be very tractable in certain cases since it turns
out that the h(·) that minimizes (3) is:

h∗(xb) = E [Xa | Xb = xb]. (4)

The above is read as the “conditional expectation of the random vector Xa, given the
observed value xb”. Does the best estimator h∗(·) make sense? Yes of course!

Brief reminder: If two random vectors Xa and Xb are distributed say with a density
fab(xa, xb), then the conditional density of Xa given Xb = xb is:

fa|b(xa|xb) =
fab(xa, xb)

fb(xb)
,

where the denominator is the marginal density of Xb, namely (assuming Xa is k-
dimensional):

fb(xb) =

∫
xa∈Rk

fab(xa, xb)dxa.

I.e. to get the marginal density of Xb you need to “integrate out” all of the values that
Xa may get. And to get the conditional distribution of Xa given the information that
Xb takes a specific values xb, you need to “rescale” the joint density by the marginal of
Xb. Try to draw this in two dimensions.

Now the conditional expectation (for a given value of Xb) that appears in (4) is
simply evaluated as follows:

E [Xa | Xb = xb] =

∫
xa∈Rk

xa fa|b(xa|xb)dxa.
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Further note that the expression E [Xa | Xb] (where we do not specify a given values for
Xb) is actually a random variable that is a function of the random variable Xb, where
the function is:

g(Xb) =

∫
xa∈Rk

xa fa|b(xa|Xb)dxa.

Hence the conditional expectation E [Xa | Xb] is actually a random variable in itself.
And we may thus attempt to take its expectation. It turns out that in this case:

E
[
g(Xb)

]
= E

[
E [Xa | Xb]

]
= E [Xa]. (5)

Note: The above “brief reminder” about conditional expecation is very informal as
technical details are missing. Yet this is enough for our needs.

Here is now (an informal) proof of (4):
Proof First use the conditional expectation formula similar to (5):

E
[
||Xa−h(Xb)||2

]
= E

[
E
[
||Xa−h(Xb)||2 | Xb

] ]
=

∫
E
[
||Xa−h(Xb)||2 | Xb(ω)

]
dPXb(ω).

(6)
The last expression represents the outer expectation as a Lebesgue integral with respect
to the probability measure associated with the random variable Xb. This is not needed
to understand the proof, but is here for additional clarity on the meaning of expectation.

Note that the internal conditional expectation (conditional on Xb) is a function, g̃(·)
of the random variable Xb. Let’s investigate this function in a bit greater detail. Assume
that the estimator h(Xb) takes on the value z (i.e. assume that in the probability sample
space associated with the random variable Xb, we get and ω such that h(Xb(ω)) = z).
Then,

E
[
||Xa − z||2 | Xb

]
= E

[
||Xa||2 | Xb

]
− 2z′E

[
Xa | Xb

]
+ ||z||2

Taking derivative with respect to z (note that z is generally a vector) and equating to
0 implies that the above is minimized by z = E [Xa|Xb]. I.e. the integrand in (6) is
minimized by setting,

h(Xb) = E [Xa|Xb].

Thus the integral (the outer expectation) is also minimized by this choice of h(·) and
thus the (3) is minimized by (4). �

Evaluating (4) for arbitrarily distributed Xa and Xb can be a complicated (not ex-
plicitly solvable) task. Yet for Gaussian random vectors we are blessed with a clean
result. Indeed as we saw in the case of Gaussian random vectors that this conditional
expectation has the closed (linear) form. So if you believe (4), in the case of Gaussian
random vectors,

h∗(xb) = µa + ΣabΣ
−1
b (xb − µb).
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We thus see that for Gaussian random vectors, the optimal estimator h∗(·) is an linear
(affine to be precise) function of xb. It is thus tempting to restrict the function class of
h∗(·) in (3) to,

h(xb) = Gxb + g,

where G and g are a matrix and a vector of the appropriate dimension. The pair (G, g)
that minimizes (3) is sometimes called the LMMSE estimator (Linear Minimum Mean
Square Error estimator).

Exercise 3.1 What are G and g in the case of Gaussian random variables?

Exercise 3.2 Prove the following proposition by taking derivatives w.r.t. to G and g.

Proposition 3.3 Let (Xa, Xb) be random vectors with means µa and µb respectively and
with a covariance matrix (of (Xa, Xb)

′) being:[
Σa Σab

Σ′ab Σb

]
.

Then LMMSE estimator of Xa given Xb = xb is:

h∗(xb) = µa + ΣabΣ
−1
b (xb − µb).

Further the covariance matrix of the error vector Xa − h∗(Xb) is given by:

E
[(
Xa − h∗(Xb)

)(
Xa − h∗(Xb)

)′]
= Σa − Σa,bΣ

−1
b Σ′a,b.

In the case of non-Gaussian random variables, restricting to an affine estimator based
on G and g is often a compromise:

Exercise 3.4 Let Xb have a uniform distribution on the interval [−1, 1] and let Xa =
X2
b . Find the best affine estimator of Xa in terms of Xb and compare its performance

(using the objective (3)) to the best estimator (4).
Repeat for the case of,

fa,b(xa, xb) =

{
2e−(xa+xb) 0 ≤ xb ≤ xa <∞,

0 elsewhere.
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4 The Kalman Filtering Problem “Solved” by LMMSE

Our goal is to have a state estimate, x̂(n) for a given (A,B,C,D) + noise system:

x(n+ 1) = Ax(n) +Bu(n) + ξx(n)
y(n) = Cx(n) +Du(n) + ξy(n)

.

More specifically we assume we have controlled this system over times k = 0, . . . , N −
1 by setting inputs u(0), . . . , u(N − 1) (which we know) and have measured outputs
y(0), . . . , y(N − 1). Note that we treat x(0) as a random variable also where we assume
we know its mean and covariance.

We will now show that his problem can be posed as estimating Xa based on mea-
surement of Xb (as presented in the previous section) where,

Xa = (x(0)′, x(1)′, . . . , x(N)′)′, Xb = (y(0)′, y(1)′, . . . , y(N)′)′,

and the inputs u(0), . . . , u(N − 1) are known values.
By iterating the system, we get:

x(1) = Ax(0) +Bu(0) + ξx(0),

x(2) = A2x(0) + ABu(0) +Bu(1) + Aξx(0) + ξx(1),

x(3) = A3x(0) + A2Bu(0) + ABu(1) +Bu(2) + A2ξx(0) + Aξx(1) + ξx(2),
...

x(N) = ANx(0) +
N−1∑
k=0

AN−1−kBu(k) +
N−1∑
k=0

AN−1−kξx(k).

Plugging the above in the output equations, we get,

y(0) = Cx(0) +Du(0) + ξy(0),

y(1) = CAx(0) + CBu(0) + Cξx(0) +Du(1) + ξy(1)

y(2) = CA2x(0) + CABu(0) + CBu(1) + CAξx(0) + Cξx(1) +Du(2) + ξy(2)
...

y(N) = CANx(0) +
N−1∑
k=0

(CAN−1−kB)u(k) +Du(N) +
N−1∑
k=0

CAN−1−kξx(k) + ξy(N)

It is thus a simple matter to write out constant matrices Ã, C̃ and well as functions of
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the known input, b̃(u), d̃(u), such that:

Xa =


x(0)
x(1)

...
x(N)

 = Ã


x(0)
ξx(0)

...
ξx(N − 1)

+ b̃
(
u(0), . . . , u(N − 1)

)
,

Xb =

 y(0)
...

y(N)

 = C̃


x(0)
ξx(0)

...
ξx(N − 1)

+

 ξy(0)
...

ξy(N)

+ d̃
(
u(0), . . . , u(N)

)

Exercise 4.1 Specify Ã, C̃ as well as b̃(u), d̃(u) explicitly.

It is now useful to consider the combined random vector,

ζ =



x(0)
ξx(1)

...
ξx(N − 1)
ξy(0)

...
ξy(N)


.

We may now rewrite the equations for Xa and Xb as follows:[
Xa

Xb

]
= F̃ ζ + f

(
u(0), . . . , u(N)

)
.

Exercise 4.2 Specify F̃ as well as f̃(u) explicitly.

We further have,

Σζ := Cov(ζ) =



Σx(0) 0 0 0

0

 Σx 0
. . .

0 Σx


 Σxy 0

. . .

0 Σxy

 0

0

 Σ′xy 0
. . .

0 Σ′xy


 Σy 0

. . .

0 Σy

 0

0 0 0 Σy


.
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Here the Σx(0) is an assumed covariance matrix for x(0). The other Σ elements are the
covariances of the noise vectors: Σx is the covariance matrix of the disturbance. Σy is the
covariance matrix of the measurement noise. And Σx,y is the cross-covariance between
disturbance and measurements (this is often assumed 0).

Thus,

Cov
([ Xa

Xb

])
= F̃ΣζF̃

′ :=:

[
Σa Σab

Σ′ab Σb

]
.

Observe also that,

µa = E [Xa] = [E [x(0)]′ 0′ . . . 0′]′ + b̃
(
u(0), . . . , u(N − 1)

)
,

µb = E [Xb] = d̃
(
u(0), . . . , u(N)

)
.

We now have all of the needed ingredients of Proposition 3.3 to calculate the LMMSE
of Xa based on Xa. I.e. take,

h∗(xb) = µa + ΣabΣ
−1
b (xb − µb).

and then the predictor at for the state at time n is:

x̂(n) =
[
h∗(xb)

]
(nN+1,...,nN+n)

.

While this is very nice, it is not efficient from a control theory perspective since
getting an estimate for Xa requires computation of the order of O((nN)3). It would be
much better to have some sort of recursive solution that yields x̂(N) at each step. This
is the celebrated Kalman filtering algorithm which we present in the next section.

Exercise 4.3 Consider the scalar system:

x(n+ 1) = 2x(n) + u(n) + ξx(n)

y(n) = x(n) + ξy(n)

Where ξx(n) and ξy(n) are both of unit variance and assumed uncorrelated.
Assume x(0) is such that E [x(0)] = 0 and V ar

(
x(0)

)
= 0. Assume a control input

of u(n) = 1 was applied to the system over the times n = 0, 1, 2. And the measured
output was,

(
y(0), y(1), y(2), y(3)

)
= (y0, y1, y2, y3).

Use the derived LMMSE in this section to obtain an estimator for x(3) in terms of
(y0, y1, y2, y3).
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5 The Kalman Filtering Algorithm

For simplicity in this section, we assume B = 0 and D = 0 and thus our system is

x(n+ 1) = Ax(n) + ξx(n)
y(n) = Cx(n) + ξy(n)

.

The more general case (with inputs) easily follows and is left as an exercise. We shall
also assume for simplicity that Σxy = 0. This assumption can also be relaxed.

In general the Kalman filtering algorithm is based on (deterministic) sequenceK(0), K(1), . . .
that is used as follows:

x̂(n+ 1) = Ax̂(n) +K(n)
(
y(n+ 1)− CAx̂(n)

)
. (7)

In this sense it is like a Luenberger observer yet where the matrices K generally depend
on time (even in the case presented here where A and C are constant). As an aid for
calculating K(n) we have,

S(n) := Cov
(
x(n+ 1)− x̂(n+ 1)

∣∣ x(n), x(n− 1), . . . , x(0)
)
,

with S(n) following the following recursion:

S(n+ 1) = A
(
S(n)− S(n)C ′

(
CS(n)C ′ + Σy

)−1
CS(n)

)
A′ + Σx.

Now S(n) is used to obtain K(n) as follows:

K(n) = S(n)C ′
(
CS(n)C ′ + Σy

)−1
.

Note that in many applications we may also use the steady state Kalman filter in which
we take S(n) as the fixed unique positive definite S solving equation:

S = A
(
S − SC ′

(
CSC ′ + Σy

)−1
CS
)
A′ + Σx.

This then yields a constant K in (7).
It is obvious that the Kalman filter and (even more) the steady state Kalman filter

are computationally efficient compared to the method described in the previous section.

Exercise 5.1 Consider the scalar system,

x(n+ 1) =
4

5
x(n) + ξx(n),

y(n) = x(n) + ξy(n).

Take, V ar
(
ξx(n)

)
= 9/25 and V ar

(
ξy(n)

)
= 1. Find the form of the predictor x̂n(y).

Find the steady state predictor.
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We have the following:

Theorem 5.2 The sequence defined in (7) is the LMMSE estimator of x(n).

Note that the proof below is based on the the fact the noise terms are Gaussian.
In this case the LMMSE is also the optimal MSE estimator. A more general proof
based on the orthogonality principle, based on the representation of square integrable
random vectors as elements of a Hilbert space is also known but is not discussed here.
In that case Gaussian assumptions are not required and (7) is still the LMMSE (yet not
necessarily the best MSE estimator).
Proof

Denote Y (n) =
(
y(0), y(1), . . . , y(n)

)
and set,

x̂−(n) := E [x(n)|Y (n− 1)], x̂(n) := E [x(n)|Y (n)].

Observe by (4) that x̂(n) is the optimal MSE estimator of x(n) and thus also the LMMSE
estimator since x(·) is Gaussian. Denote the respective conditional covariance matrices:

P (n) := E
[(
x(n)− x̂(n)

)(
x(n)− x̂(n)

)′ | Y (n)
]
,

P−(n) := E
[(
x(n)− x̂−(n)

)(
x(n)− x̂−(n)

)′ | Y (n− 1)
]
.

Further for n = 0 set, P−(0) := Σx(0) and x̂−(0) := E [x(0)]. Observe that in addition
to y(·) and x(·), the sequences x̂−(·) and x̂(·) are also jointly Gaussian since they are
all generated by linear combinations of the “primitives” of the process, ξx(·), ξy(·) and
x(0) and also since x̂−(·) and x̂(·) follow from the formula for the conditional expecation
in (2).

The key step is to observe that when conditioning on Y (n − 1), the distribution of
[x(n)′, y(n)′]′ is,

N
([ x̂−(n)

Cx̂−(n)

]
,

[
P−(n) P−(n)C ′

CP−(n) CP−(n)C ′ + Σy

])
. (8)

Noting that,
x̂(n) = E [x(n) | Y (n)] = E [x(n) | y(n), Y (n− 1)],

we apply the mean and covariance formulas of(2) based on (8) with everything precon-
ditioned on Y (n− 1) to get:

x̂(n) = x̂−(n) + P−(n)C ′
(
CP−(n)C ′ + Σy

)−1(
y(n)− Cx̂−(n)

)
, (9)

P (n) = P−(n)− P−(n)C ′
(
CP−(n)C ′ + Σy

)−1
CP−(n). (10)

Now observe that,

x̂−(n+ 1) = E [x(n+ 1)|Y (n)] = E [Ax(n) + ξx(n)|Y (n)] = AE [x(n)|Y (n)] = Ax̂(n),
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and thus substitution in (9) for time n+ 1 yields,

x̂(n+ 1) = Ax̂(n) + P−(n+ 1)C ′
(
CP−(n+ 1)C ′ + Σy

)−1(
y(n+ 1)− CAx̂(n)

)
.

Further,

P−(n+ 1) = Cov
(
x(n+ 1) | Y (n)

)
= Cov

(
Ax(n) + ξx(n) | Y (n)

)
= AP (n)A′ + Σx.

Substitution of (10) in the above yields

P−(n+ 1) = A
(
P−(n)− P−(n)C ′

(
CP−(n)C ′ + Σy

)−1
CP−(n)

)
A′ + Σx.

Now denote S(n) := P−(n+ 1) to obtain the desired equations:

x̂(n+ 1) = Ax̂(n) +K(n)
(
y(n+ 1)− CAx̂(n)

)
K(n) = S(n)C ′

(
CS(n)C ′ + Σy

)−1

S(n+ 1) = A
(
S(n)− S(n)C ′

(
CS(n)C ′ + Σy

)−1
CS(n)

)
A′ + Σx.

�

Exercise 5.3 What is the Kalman filter for the case of B 6= 0 and D 6= 0. Describe
any needed changes in the proof above.

6 Brief Overview of LQG

We only touch LQG briefly and informally. Consider the system,

x(n+ 1) = Ax(n) +Bu(n) + ξx(n)
y(n) = Cx(n) +Du(n) + ξy(n),

and assume our goal is to find an optimal output feedback law: u∗(y), such that the
following is minimized:

E
[ N∑
k=0

x(n)′Qx(n) + u(n)′Ru(n)
]
,

with N either finite or infinite and Q ≥ 0, R > 0. Assume further that (A,B) is
controllable and (A,C) is observable.

This generalization of the linear quadratic regulator (LQR) problem studied in pre-
vious units, is often refereed to as the LQG problem (Linear quadratic Gaussian). Note
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that the LQR formulation that we studied ignored the output y and assumed state-
feedback.

It turns out that solution of the LQG problem by means of dynamic programming
(yet with a stochastic element) is essentially equivalent to dynamic programming solution
of LQR. The basic ingredient is once again Bellman’s principle of optimality, yet this
time presented in a stochastic (Markovian) setting:

In somewhat greater generality, consider systems of the form:

x(n+ 1) = f
(
x(n), u

(
x(n)

)
, ξ(n)

)
, n = 0, 1, . . . , N − 1,

where f(·) is some function and ξ is an i.i.d. sequence. For any prescribed u(·) such a
system is a Markov chain (informally a stochastic process whose next step only depends
on the current state and some noise component and not on the past). The basic set-
ting of stochastic dynamic programming (a.k.a. Markov decision processes) is to find a
u∗n(x), n = 0, 1, . . . , N − 1 such that,

E
[
gN
(
x(N)

)
+

N−1∑
k=0

gk
(
x(k), uk

(
x(k)

)
, ξ(k)

)]
,

is minimized. Here gk(·), k = 1, . . . , N − 1 is the cost per stage and gN(·) is the terminal
cost. Note also the slight change of notation, where we put the time index as a subscript
of u.

Principle of optimality (stochastic version): Let u∗ =
(
u∗0(·), . . . , u∗N−1(·)

)
be

an optimal policy. Assume that in the stochastic process resulting from u∗(·) it is possible
to reach a given state at time n . Consider now the subproblem whereby the process is
in state x(n) at time n and wish to minimize:

E
[
gN
(
x(N)

)
+

N−1∑
k=n

gk
(
x(k), uk

(
x(k)

)
, ξ(k)

)]
,

then the truncated policy
(
u∗n(·), u∗n+1(·), . . . , u∗N−1(·)

)
is optimal for this subproblem. �

By application of the principle of optimality in similar spirit to as is done for the
solution of discrete time LQR, we get a solution to the LQG problem that parallels that
of the LQR problem, yet takes the noise into account in the following beautiful manner:

1. The Kalman filtering solution yields an estimator of x̂(·).

2. The deterministic LQR solution (assuming known x) is applied to x̂.

In view of the brevity of this section, we omit details, yet mention that this is a stochas-
tic manifestation of the separation principle presented in Unit 4, where the observer
and feedback control law can be designed separately and then combined. Non-linear
(deterministic and stochastic) systems usually do not exhibit this clean property – and
are a current active area of research.
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