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1 About

The first sections of this unit are about some key properties of convolutions, integral
transforms and related concepts. Conditions for existence and finiteness are not the
focus here. We use the term continuous time and discrete time functions/signals to
mean that their domains are subsets of R or Z respectively.

The remaining sections (section 8 and onwards) about linear time invariant (LTI)
systems with a single input and a single output (SISO). The basics of some of the aspects
appearing in an undergraduate “Signals and Systems” course are covered. The treatment
of indefinite integrals, generalized functions and other limiting objects is not rigourous
yet suffices for the understanding of this material needed in engineering applications of
control.

Warning: Don’t confuse “continuous time” (in these notes) with “continuous”.

2 Signals

The term signal is essentially synonymous with a function, yet a possible difference is
that a signal can be described by various different representations, each of which is a
different function.

Signals may be discrete time or continuous time. Although some signals are “digi-
tized”, their values are typically taken as real (or complex). Signals may be either scalar
or vector.

When talking about SISO linear systems, a signal, u(t) may be viewed as: u : R→ R
if the setting is that of continuous time or u : Z→ R in the discrete time setting.

It is typical and often convenient to consider a signal through an integral transform
(e.g. the Laplace transform) when the transform exists.

Example 1 Consider the signal,

u(t) =

{
0 t < 0,
e−t 0 ≤ t.

The Laplace transform is,

û(s) =

∫ ∞
0

e−ste−tdt =
1

s+ 1
, for s ≥ −1.
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In this case, both u(t) and û(s) represent the same signal. We often say that u(t)
is the time-domain representation of the signal where as û(s) is the frequency-domain
representation.

It is common to do operations on signals. Here are a few very common examples:

• ũ(t) = α1u1(t) + α2u2(t): Add, subtract, scale or more generally take linear com-
binations.

• ũ(t) = u(t− τ): Translation. Shift forward in case τ > 0 (delay) by τ .

• ũ(t) = u(−t): Reverse time.

• ũ(t) = u(αt): Time scaling. Stretch (for 0 < α < 1). Compress (for 1 < α).

• ũ(n) = u(nT ): Sample to create a discrete time signal from a continuous one
signal.

• ũ(t) =
∑

n u(nT )K
(
t−nT
T

)
, where K(·) is an interpolation function. I.e. it has the

properties K(0) = 1, K(n) = 0 for other integers n 6= 0.

Exercise 1 Find the K(·) that will do linear interpolation, i.e. connect the dots. Illus-
trate how this works on a small example.

3 Convolutions

Definitions and Applications

Let f(·), g(·) be two functions. The convolution of f and g is the function
(
f ∗ g

)
(·):

(
f ∗ g

)
(t) :=

∫ ∞
−∞

f(τ)g(t− τ)dτ.

If the functions are of positive support (= 0 for t < 0) the range of integration in the
convolution integral reduces to τ ∈ [0, t].

For a probabilist, the convolution is the basic tool of finding the distribution of the
sum of two independent random variables X and Y , say with densities fX(·) and fY (·):

FX+Y (t) := P (X + Y ≤ t) =

∫ ∞
−∞

∫ t−x

−∞
P
(
(X, Y ) ∈ [x, x+ dx)× [y, y + dy)

)
dy dx

=

∫ ∞
−∞

∫ t−x

−∞
fX(x)fY (y)dy dx =

∫ ∞
−∞

fX(x)
(∫ t−x

−∞
fY (y)dy

)
dx.
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So for the density, fX+Y (t) := d
dt
FX+Y (t), we have

fX+Y (t) =

∫ ∞
−∞

fX(x)
( d
dt

∫ t−x

−∞
fY (x)dy

)
dx =

∫ ∞
−∞

fX(x)fY (t− x)dx =
(
fX ∗ fY

)
(t).

Convolution is also defined for discrete time functions (in probability theory this often
corresponds to the probability mass function of the sum of two independent discrete
random variables):

PX+Y (n) = P
(
X + Y = n

)
=

∞∑
k=−∞

P
(
X = k

)
P
(
Y = n− k

)
=
(
PX ∗ PY

)
(n).

Note again that if PX and PY are of positive support (= 0 for t < 0) then the range of
summation in the convolution sum reduces to k ∈ {0, . . . , n}.

Another way to view discrete convolutions is as a representation of the coefficients
of polynomial products. Denote,

A(x) =
n−1∑
j=0

ajx
j, B(x) =

n−1∑
j=0

bjx
j, C(x) = A(x)B(x) =

2n−2∑
j=0

cjx
j.

Exercise 2 Show that cj =
∑j

k=0 akbj−k. Note: Assume ai, bi = 0 for i /∈ {0, . . . , n−1}.

Our use of convolutions will be neither for probability nor for polynomial products -
but rather for the “natural” application of determining the action of a linear system on
an input signal.

Algebraic Properties

• Commutativity:(
f ∗ g

)
(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ =

∫ ∞
−∞

f(t− τ)g(τ)dτ =
(
g ∗ f

)
(t)

• Associativity: (
f ∗ g

)
∗ h = f ∗

(
g ∗ h

)
• Distributivity:

f ∗ (g + h) = f ∗ g + f ∗ h.

• Scalar multiplication:

α(g ∗ h) = (αg) ∗ h = g ∗ (αh).
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• Shift/Differentiation:

D(g ∗ h) = (Dg) ∗ h = g ∗ (Dh),

where D is either the “delay by one” operator for discrete time or the differentiation
operator for continuous time.

Exercise 3 Show the shift/differentiation property. Do both shift (discrete time) and
differentiation (continuous time).

Sometimes the notation f ∗m is used for f ∗ f ∗ . . . ∗ f , m times.
If f is a probability density with mean µ and finite variance σ2, the central limit

theorem (CLT) in probability says that as m → ∞, f∗m(t)−mµ√
mσ

converges to the normal

(Gaussian) density:

φ(x) =
1√
2π
e−t

2/2.

Exercise 4 Let f(t) = 1(t)1(1 − t). Find f ∗k, k = 2, 3, 4. Do the same for f2(t) =
e−t1(t). Plot the resulting functions and relate this to the CLT.

Sufficient conditions for existence of the convolution

The support of a function f is the (closure of the) set of values for which f(t) 6= 0. We
often talk about positive support if the the support does not contain negative values,
and also about bounded support if the support is a bounded set..

A continuous time function, f is locally integrable if
∫ b
a
|f(t)|dt exists and is finite for

every a, b.

Theorem 1 The convolution f1 ∗ f2 in continuous time exists if both signals are locally
integrable and if one of the following holds

1. Both signals have bounded support.

2. Both signals have positive support.

3. ||f1||2 and ||f2||2 are both finite.

Theorem 2 The theorem above holds for discrete time signals without the locally inte-
grable requirement. In that case the L2 norms above are taken as `2 norms.
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4 Laplace Transforms

Let s be a complex number, the Laplace transform of a continuous time function f(t)
at the “frequency” f(·) is,

L{f(·)}(s) =

∫ ∞
0−

e−stf(t)dt. (1)

We shall often denote L{f(·)} by f̂ . Observe the lower limit to be 0− and read that as,

lim
ε→0−

∫ ∞
ε

e−stf(t).

This is typical “engineering notation” as the function f(·) may sometimes have “pecu-
liarities” at 0. For example may have a generalized function component. In applied
probability and other more rigorous mathematical contexts, the Laplace-Stiltijes Trans-
form is often used, ∫ ∞

0

e−stdF (t),

where the above is a Stiltijes integral. We shall not be concerned with this here. Our
Laplace transform, (1) is sometimes referred to as the one-sided Laplace transform.
Whereas,

LB{f(·)}(s) =

∫ ∞
−∞

e−stf(t)dt,

is the bilateral Laplace transform. The latter is not as useful and important as the former
for control purposes. An exception is the case of s = iω (pure imaginary) in which case,

f̂(ω) = LB{f(·)}(iω),

is the (up to a constant) Fourier transform of f (here we slightly abuse notation by using
the “hat” for both Laplace and Fourier transforms). Note that in most engineering text
the symbol i =

√
−1 is actually denoted by j.

In probability, the Laplace transform of a density, fX of a continuous random variable
has the meaning, E [e−sX ]. This has many implications and applications which we shall
not discuss.

Existence, Convergence and ROC

A function f(t) is said to be of exponential order as t → ∞ if there is a real σ and
positive real M , T such that for all t > T ,

|f(t)| < Meσt. (2)

The function et
2

is not of exponential order but most signals used in control theory are.
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Exercise 5 Show that the following is an alternative definition to exponential order:
There exists a real σ̃ such that,

lim
t→∞

∣∣f(t)e−σ̃t
∣∣ = 0.

Exercise 6 Show that any rational function is of exponential order.

For a function of exponential oder, the abscissa of convergence, σc, is the greatest lower
bound (infimum) of all possible values σ in (2). Hence for polynomials, σc = 0 while for
functions of the form etα with α > 0, σc = α.

Exercise 7 What is the abscissa of convergence of a rational function f(t) = a(t)
b(t)

(here

a(t) and b(t) are polynomials and a(t) is of lower degree)?

Theorem 3 Functions f(t) that are locally integrable and are of exponential order with
σc have a Laplace transform that is finite for all Re(s) > σc.

The regieon in the complex s-plane: {s : Re(s) > σc} is denoted the regieon of
convergence (ROC) of the Laplace transform.
Proof

|f̂(s)| =
∣∣∣ ∫ ∞

0−
e−stf(t)dt

∣∣∣ ≤ ∫ ∞
0−

∣∣e−st∣∣∣∣f(t)
∣∣dt.

Writing s = σ + iω we have |e−st| = e−σt, so for all σ′ > σc

|f̂(s)| ≤M

∫ ∞
0−

e−σteσ
′tdt = M

∫ ∞
0−

e−(σ−σ
′)tdt.

This integral is finite whenever σ = Re(s) > σ′. Now since σ′ can be chosen arbitrarily
close such that σ′ > σc we conclude that the transform exists whenever σ > σc. �

Uniqueness

Laplace transforms uniquely map to their original “time-functions”. In fact, this is the
inversion formula:

f(t) = lim
M→∞

1

2πi

∫ σ+iM

σ−iM
estf̂(s)ds,

for any σ > σc. The integration is in the complex plane and is typically not the default
method.

Exercise 8 Optional (only for those that have taken a complex analysis course). Apply
the inversion formula to show that,

L−1
( 1

(s+ a)2

)
= te−at.
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Basic Examples

Example 2 The Laplace transform of f(t) = c:

L(c) =

∫ ∞
0

e−stc dt = lim
T→∞

∫ T

0

e−stc dt = lim
T→∞

[
− c

s
e−st

]T
0

=
c

s

(
1− lim

T→∞
e−sT

)
.

When does the limit converge to a finite value? Take s = σ + iω,

lim
T→∞

e−sT = lim
T→∞

e−σT (cosωT + i sinωT ).

So we need σ > 0 to get limT→∞ e−sT = 0, hence,

f̂(s) =
c

s
, Re(s) > 0.

Exercise 9 Show that the transform of f(t) = eαt is,

f̂(s) =
1

s− α, Re(s) > Re(α).

Exercise 10 Derive the Laplace transform (and find ROC) of

f(t) = e−at cos(bt).

For other examples see a Laplace transform table.

Basic Properties

You should derive these.

• Linearity:
L
(
α1f1(t) + α2f2(t)

)
= α1f̂1(t) + α2f̂2(t).

• Time shift:

L
(
f(t− θ)

)
=

∫ ∞
0−

f(t− θ)e−stdt =

∫ ∞
0−

f(t)e−s(t+θ)dt = e−sθf̂(t).

• Frequency shift:
L
(
e−atf(t)

)
= f̂(s+ a).

• Time Scaling:

L
(
f(at)

)
=

1

|a| f̂
(s
a

)
.
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• Differentiation:

L
(
f ′(t)

)
=

∫ ∞
0−

f ′(t)e−stdt = f(t)e−st
∣∣∞
0

+ s

∫ ∞
0−

f(t)e−stdt = −f(0−) + sf̂(s).

• Integration:

L
( ∫ t

0

f(x)dx
)

=
1

s
f̂(s).

More basic properties are in one of tens of hundreds of tables available in books or on
the web.

Relation To Differential Equations

The differentiation formula allows to transform differential equations into algebraic equa-
tions for s. Then the equations may be solved in the s-plane and transformed back to
obtain the solutions.

Exercise 11 Solve using the Laplace transform:

ẍ(t) + 6x(t) = cos
( t

2

)
,

with x(0) = 0, ẋ(0) = 0.

Relation To Convolution

This property is very important:

L
(
f1(t) ∗ f2(t)

)
= f̂1(s)f̂2(s).

Exercise 12 Prove it.

5 Rational Laplace Transforms and Partial Fraction

Expansion

Often Laplace (as well as Fourier and Z) transforms are of the rational form,

f̂(s) =
p(s)

q(s)
=

pms
m + . . .+ p1s+ p0

qnsn+ . . . . . . . . .+ q1s+ a0
,
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with pi, qi either real or complex coefficients (we mostly care about real coefficients) such
that, pm, qn 6= 0. The function f̂(·) is called proper if m ≤ n, strictly proper if m < n
and improper if m > n.

If f̂(s) is not strictly proper, then by performing long division it may be expressed
in the form,

r(s) +
v(s)

q(s)
,

where r(s) is a polynomial of degree m− n and v(s) is a polynomial of degree < n.

Exercise 13 Carry long division out for,

f̂(s) =
s4 + 2s3 + s+ 2

s2 + 1
,

to express it in the form above.

The action of performing partial fraction expansion is the action of finding the coef-
ficients Aik such that a strictly proper f̂(·) in the form,

f̂(s) =
K∑
i=1

( mi∑
k=1

Aik
(s− si)k

)
,

where s1, . . . , sK are the distinct real or complex roots of q(s), and the multiplicity of
root si is mi.

After carrying out long division (if needed) and partial fraction expansion, f̂(s) may
be easily inverted, term by term.

Example 3 Consider,

f̂(s) =
1

s2 + 3s+ 2
=

1

(s+ 1)(s+ 2)
.

We want the form,

f̂(s) =
A11

s+ 1
+

A21

s+ 2
.

This to equation,
1 = A11(s+ 2) + A21(s+ 1). (3)

or,
1 = (A11 + A21)s+ (2A11 + A21). (4)

Now “identity coefficients of terms with like powers of s” to get a set of linear equations:

A11 + A21 = 0

2A11 + A21 = 1

to get A11 = 1 and A21 = −1.
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Example 4 Consider,

f̂(s) =
s− 1

s3 − 3s− 2
=

s− 1

(s+ 1)2(s− 2)
.

We want the form,

f̂(s) =
A11

s+ 1
+

A12

(s+ 1)2
+

A21

s− 2
.

Similar to before, we may get a system of equations for the Aik.

Exercise 14 Complete the partial fraction expansion of the above example.

When the coefficients of q(·) are real, the roots are complex conjugate pairs (say with
multiplicity mi). In this case we may write for any pair of roots, si and si,

(s− si)(s− si) = s2 + ais+ bi,

where ai and bi are real coefficients. In this case, the partial fraction expansion is of the
form,

f̂(s) = . . . . . .+
Bi1s+ Ai1
s2 + ais+ bi

+
Bi2s+ Ai2

(s2 + ais+ bi)2
+ . . .+

Bimi
s+ Aimi

(s2 + ais+ bi)mi
+ . . . . . . .

A similar technique may be used to find the B’s and A’s.

Exercise 15 Carry out a partial fraction expansion for,

f̂(s) =
s+ 3

(s2 + 2s+ 5)(s+ 1)
.

6 The Fourier Transform in Brief

The Fourier transform of f(t) is:

f̂(ω) =

∫ ∞
−∞

f(t)e−iωtdt.

The inverse fourier transform is,

f(t) =
1

2π

∫ ∞
−∞

f(ω)eiωtdw.

Exercise 16 Find the Fourier transform of f(t) = sin(t)
t

.
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Conditions for convergence:

Theorem 4 A sufficient condition for convergence of the Fourier integral is that f(·)
satisfies the following:

•
∫∞
−∞

∣∣f(t)
∣∣dt <∞.

• f(·) has a finite number of maxima and minima in any finite interval.

• f(·) has a finite number of discontinuities within any finite interval. Furthermore
each of these discontinuities must be finite.

By means of generalized functions, the Fourier transform may also be defined (and
convergences) for periodic functions that are not absolutely integrable.

Basic Properties

Many properties are very similar to the Laplace transform (the Fourier transform is a
special case of the bilateral Laplace transform).

Some further important properties are:

• The transform of the product f1(t)f2(t) is
(
f̂1 ∗ f̂2

)
(·). This has far reaching

implications in signal processing and communications.

• Parseval’s Relation (energy over time = energy over spectrum):∫ ∞
−∞

∣∣f(t)
∣∣2dt =

1

2π

∫ ∞
−∞

∣∣f̂(ω)
∣∣2dω.

Graphical Representaions

Plots of
∣∣f̂(ω)

∣∣ and ∠f̂(ω) are referred to by engineers as Bode plots. It is typical to
stretch the axis of the plots so that the horizontal axis is log10(ω) and the vertical
axis are 20 log10

∣∣f̂(ω)
∣∣ and ∠f̂(ω). There is a big tradition in engineering to generate

approximate bode plots by hand based on first and second order system approximations.
An alternative plot is the Nyquist plot

Exercise 17 Generate a Bode and a Nyquist plot of a system with transfer function,

H(s) =
1

s2 + s+ 2
.
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7 The Z Transform in Brief

This is the analog of the Laplace transform for discrete time functions, f(n). The
Z-transform is defined as follows,

f̂(n) =
∞∑

k=−∞

f(n)z−n.

Many of the things we do for continuous time using the Laplace transform may be
done for discrete time using the Z-transform. We will not add further details in this
unit, but rather touch discrete time systems when we talk about general (MIMO) linear
systems.

8 The Delta Function and Generalized (Singular)

Signals

Engineering (and mathematics) practice of continuous time signals is often greatly sim-
plified by use of generalized signals. The archetypal such signal is the delta-function
denoted by δ(t), also called impulse. This “weird” mathematical object has the follow-
ing two basic properties:

1. δ(t) = 0 for t 6= 0.

2.
∫∞
−∞ δ(t)dt = 1.

Now obviously there is no such function δ : R→ R, that obeys these two properties if the
integral is taken in the normal sense (e.g. Reiman integral). The rigorous description of
delta functions is part of the theory of distributions (not to be confused with probability
distributions). We shall overview it below informally and then survey a few useful
properties of the delta function. First, one should be motivated by the fact that in
practice the delta function can model the following:

1. The signal representing the energy transfer from a hammer to a nail.

2. The “derivative” of the unit step function,

3. A Gaussian (normal) density of variance 0.

A more formal (yet not fully rigorous) way to define delta functions is “under the
integral sign”. It can be thought of as an “entity” that obeys,∫ ∞

−∞
δ(t)φ(t)dt = φ(0), (5)
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for every (regular) function φ that is continuous at 0 and has bounded support (equals
0 outside of a set containing the origin). Entities such as δ(t) are not regular functions -
we will never talk about the “value” of δ(t) for some t, but rather always consider values
of integrals involving δ(t). Yet from a practical perspective they may often be treated
as such.

An important operation in the study of linear systems is the convolution. We use ’∗’
to denote the convolution operator. For two continuous time signals, f(t) and g(t). The
signal h = f ∗ g resulting from their convolution is,

h(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ.

The delta function gives a way to represent any signal u(t). Consider the convolution,
δ ∗ u: ∫ ∞

−∞
δ(τ)u(t− τ)dτ = u(t− 0) = u(t). (6)

Thus we see that the δ function is the identity “function” with respect to convolutions:

δ ∗ u = u.

The discrete time version of the convolution h = f ∗ g is,

h(n) =
∞∑

k=−∞

f(k)g(n− k).

In this case a discrete parallel of (6) is,

(
δ ∗ u

)
(n) =

∞∑
k=−∞

δ[k]u(n− k) = u(n). (7)

Here δ[n] is the discrete delta function (observe the square brackets), a much simpler
object than δ(t) since it is defined as,

δ[n] =

{
1 n = 0,
0 n 6= 0.

Thus we have again that δ ∗ u = u. Note that part of the motivation for introducing for
the continuous time delta function is to be able to mimic the representation (7).

We shall soon present other generalized signals related to the delta function. Since
such functions are “defined under the integral” sign, two signals η1(t) and η2(t) are equal
if, ∫ ∞

−∞
η1(t)φ(t)dt =

∫ ∞
−∞

η2(t)φ(t)dt,
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for a “rich enough class” of functions, φ(·).
For generalized signals η1(·) and η2(·) and for scalars α1, α2, we define the signal of

the linear combination as,∫ ∞
−∞

(
α1η1 + α2η2

)
(t)φ(t)dt = α1

∫ ∞
−∞

η1(t)φ(t)dt+ α2

∫ ∞
−∞

η2(t)φ(t)dt.

Exercise 18 Prove that: α1δ + α2δ = (α1 + α2)δ.

For regular functions f(·) and α 6= 0 we have (by a simple change of variables) that,∫ ∞
−∞

f(αt)φ(t)dt =
1

|α|

∫ ∞
−∞

f(τ)φ(
τ

α
)dτ.

For generalised signals this is taken as the definition of time scaling:∫ ∞
−∞

δ(αt)φ(t)dt =
1

|α|

∫ ∞
−∞

δ(τ)φ(
τ

α
)dτ =

1

|α|φ(0) =
1

|α|

∫ ∞
−∞

δ(t)φ(t)dt.

Here the first equality is a definition. and the second and third equalities come from the
defining equation (5). This then implies that

δ(αt) =
1

|α|δ(t).

Consider now translation. Take some time shift θ:∫ ∞
−∞

δ(t− θ)φ(t)dt =

∫ ∞
−∞

δ(τ)φ(τ + θ)dτ = φ(0 + θ) = φ(θ).

Hence delta functions translated by θ, denoted δ(t− θ) are defined by∫ ∞
−∞

δ(t− θ)φ(t)dt = φ(θ).

Consider now what happens when δ(t) is multiplied by a function f(t) continuous at
0. If δ(t) was a regular function then,∫ ∞

−∞

(
f(t)δ(t)

)
φ(t)dt =

∫ ∞
−∞

δ(t)
(
f(t)φ(t)

)
dt = f(0)φ(0)

It is then sensible to define the generalized function, f(t)δ(t) (for any regular function
f(·)) as satisfying: ∫ ∞

−∞

(
f(t)δ(t)

)
φ(t) = f(0)φ(0)

Hence we have that,
f(t)δ(t) = f(0)δ(t).

This again follows from (5).
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Exercise 19 Take τ as fixed and t ∈ R. Show that,

f(t)δ(t− τ) = f(τ)δ(t− τ).

Example 5 A useful generalized function is the so-called “Dirac Comb”, also known as
”impulse train”:

∆T (t) =
∞∑

k=−∞

δ(t− kT ).

Here of course one needs to justify the existence of the series (of generalized functions
!!!) etc, but this is not our interest.

Impulse trains are very useful for representing the operation of sampling a continuous
time (analog) signal. This is done by taking the signal u(t) and multiplying by ∆T (t).
The resulting signal has values u(t) for t = kT , k ∈ N and 0 elsewhere.

The derivation of the famous Nyquist-Shannon sampling theorem is greatly aided by
the impulse train. That theorem says that a “band limited” analog signal u(t) can be
perfectly reconstructed if sampled at a rate that is equal or greater than twice its highest
frequency.

Related to the delta function is the unit step function,

1(t) =

{
0 t < 0,
1 0 ≤ t.

(8)

This is sometimes called the “Heaviside unit function”. Other standard notation for it
is u(t), but in control theory we typically reserve u(t) for other purpuses (i.e. the input
to a system). While it is a function in the regular sense, it can also be defined as a
generalized function: ∫ ∞

−∞
1(t)φ(t)dt =

∫ ∞
0

φ(t)dt, (9)

where φ(t) is any integrable function.

Exercise 20 Derive (8) from (9).

Given a generalized function η(t), we define it’s generalized derivate, η′(t) (again a
generalized function) by: ∫ ∞

−∞
η′(t)φ(t)dt = −

∫ ∞
−∞

η(t)φ′(t)dt.

The above definition applied to 1(t) yields,∫ ∞
−∞

1′(t)φ(t)dt = −
∫ ∞
−∞

1(t)φ′(t)dt = −
∫ ∞
0

φ′(t)dt = −
(
φ(∞)− φ(0)

)
= φ(0).

We have just shown that 1′ = δ.
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Exercise 21 Show that 1′(t− θ) = δ(t− θ).

We can also look at the derivative of the delta function:∫ ∞
−∞

δ′(t)φ(t)dt = −
∫ ∞
−∞

δ(t)φ′(t)dt = −φ′(0).

This generalized function is sometimes called a doublet. Higher order derivatives of a
generalized function η are defined by,∫ ∞

−∞
η(n)(t)φ(t)dt = (−1)n

∫ ∞
−∞

η(t)φ(n)(t)dt,

here φ(t) needs to be any function from a “suitable” set of test functions. We will not
discuss generelized function in any more depth than covered here. Students interested
in functional analysis and related fields can study more about Schwartz’s theory of
distributions indepdently.

9 Systems - Basic Definitions

A system is a mapping of an input signal to an output signal. When the signals are
scalars the system is called SISO. When inputs are vectors and outputs are vectors the
system is called MIMO (Multi Input Multi Output). Other combinations are MISO and
SIMO. We concentrate on SISO in this unit. As in the figure below, we typically denote
the output of the system by y(t).

Input
u(t)

System
x(t)

Output
y(t)

Figure 1: A system operates on an input signal u(·) to generate an output signal
y(·) = O

(
u(·)

)
. The system may have a state, x(t). This unit does not focus on

state representations and thus, x(t) is often ignored here.

A system is memoryless if the output at time t depends only on the input at time
t. I.e. y(t) = g

(
u(t)

)
for some scalar function g(·). These systems are typically quite

boring.
A system is non-anticipating (or causal) if the output at time t depends only on

the inputs during times up to time t. This is defined formally by requiring that for all
t0, whenever the inputs u1 and u2 obey u1(t) = u2(t) for all t ≤ t0, the corresponding
outputs y1 and y2(t) obey y1(t) = y2(t) for all t ≤ t0.
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A system is time - invariant if its behaviour does not depend on the actual current
time. To formally define this, let y(t) be the output corresponding to u(t). The system
is time-invariant if the output corresponding to u(t− τ) is y(t− τ), for any time shift τ .

A system is linear if the output corresponding to the input α1u1(t) + α2u2(t) is
α1y1(t)+α2y2(t), where yi is the corresponding input to ui and αi are arbitrary constants.

Exercise 22 Prove that the linearity property generalises to inputs of the form
∑N

i=1 αiui(t).

Systems that are both linear and time-invariant are abbreviated with the acronym
LTI. Such systems are extremely useful in both control and signal processing. The LTI
systems of control are typically casual while those of signal processing are sometimes
not.

Exercise 23 For discrete time input u(n) define,

y(n) =
1

N +M + 1

N∑
m=−M

(
u(n+m)

)α+β cos(n)
.

When α = 1 and β = 0 this system is called a sliding window averager. It is very useful
and abundant in time-series analysis and related fields. Otherwise, there is not much
practical meaning for the system other than the current exercise.

Determine when the system is memory-less, casual, linear, time-invariant based on
the parameters N,M,α, β.

A final general notion of systems that we shall consider is BIBO stability. BIBO
stands for bounded-input-bounded-output. A system is defined to be BIBO stable if
whenever the input u satisfies ||u||∞ <∞ then the output satisfies ||y||∞ <∞. We will
see in the sections below that this property is well characterised for LTI systems.

10 LTI Systems - Overview of Representations

Many useful systems used practice (signal processing and control) are both linear and
time-invariant. For this we have the acronym LTI. The remainder of this unit deals with
LTI SISO systems.

We now overview several ways of representing linear systems:

1. IO Mapping representation.

2. Representation using the impulse response.

3. Representation using the transfer function.
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4. Representation as a difference (discrete time) or differential (continuous time)
equation.

5. State space representation.

11 The Impulse Response and Convolutions

We begin the discussion with equation (7). This is merely a representation of a discrete
time signal u(n) using the shifted (by k) discrete delta function,

δ[n− k] =

{
1 n = k,
0 n 6= k.

Treat now u(n) as input to an LTI system with output y(n). In this case since the input
as a function of the time n, is represented as in (7), the output may be represented as
follows:

y(n) = O
(
u(n)

)
= O

( ∞∑
k=−∞

δ[k]u(n−k)
)

= O
( ∞∑
k=−∞

u(k)δ[n−k]
)

=
∞∑

k=−∞

u(k)O
(
δ[n−k]

)
Now if denote h(n) = O

(
δ[n]

)
and since the system is time invariant we have that

h(n− k) = O
(
δ[n− k]

)
. So we have:

y(n) =
∞∑

k=−∞

u(k)h(n− k) =
(
u ∗ h

)
(n).

This very nice fact shows that the output of LTI systems can in fact be described by
the convolution of the the input with the function h(n). This function deserves a special
name: impulse response.

For continuous time systems the same argument essentially follows, this time using
(6):

y(t) = O
(
u(t)

)
= O

(∫ ∞
−∞

δ(t)u(t− τ)dτ
)

= O
(∫ ∞
−∞

u(τ)δ(t− τ)dτ
)

=

∫ ∞
−∞

u(τ)O
(
δ(t− τ)

)
dτ =

∫ ∞
−∞

u(τ)h(t− τ)dτ =
(
u ∗ h

)
(t).

Observe that in the above we had a “leap of faith” in taking our system to be linear in
sense that,

O
(∫ ∞
−∞

αsusds
)

=

∫ ∞
−∞

αsO
(
us
)
ds.
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We have thus seen that a basic description of LTI systems is the impulse response. Based
on the impulse response we may thus be able to see when the system is memory-less,
causal and BIBO-stable.

Exercise 24 Show that an LTI system is memory less if and only if the impulse response
has the form h(t) = Kδ(t).

Exercise 25 Show that an LTI system is causal if and only if h(t) = 0 for all t < 0.

Example 6 Consider the sliding window averager of exercise 23 with α = 1 and β = 0.
Find it’s impulse response and verify when it is casual.

The following characterises LTI systems that are BIBO stable:

Theorem 5 A SISO LTI system with impulse response h(·) is BIBO stable if and only
if,

||h||1 <∞.
Further if this holds then,

||y||∞ ≤ ||h||1 ||u||∞, (10)

for every bounded input.

Proof The proof is for discrete-time (the continuous time case is analogous). Assume
first that ||h||1 <∞. Then,

|y(n)| =
∣∣ ∞∑
k=−∞

h(n− k)u(k)
∣∣ ≤ ∞∑

k=−∞

|h(n− k)| |u(k)| ≤
( ∞∑
k=−∞

|h(n− k)|
)
||u||∞

So,
||y||∞ ≤ ||h||1 ||u||∞.

Now to prove that ||h||1 <∞ is also a necessary condition. We assume the input is real,
the complex case is left as an exercise, choose the input,

u(n) = sign
(
h(−n)

)
.

So,

y(0) =
∞∑

k=−∞

h(0− k)u(k) =
∞∑

k=−∞

|h(−k)| = ||h||1.

Thus if ||h||1 = ∞ the output for input u(·) is unbounded, so ||h||1 < ∞ is a necessary
condition. �

Exercise 26 What input signal achieves equality in (10)?

Exercise 27 Prove the continuous time version of the above.

Exercise 28 Prove the above for signals that are in general complex valued.
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12 Integral Transforms and the Transfer Function

It is now useful to consider our LTI SISO systems as operating on complex valued signals.
Consider now an input of the form u(t) = e−st where s ∈ C. We shall denote s = σ+ iω,
i.e. σ = Re(s) and ω = Im(s). We now have,

y(t) =

∫ ∞
−∞

h(τ)u(t− τ)dτ =

∫ ∞
−∞

h(τ)es(t−τ)dτ =
(∫ ∞
−∞

h(τ)e−sτdτ
)
est.

Denoting H(s) =
∫∞
−∞ h(τ)e−sτdτ we found that for exponential input, est, the output

is simply a multiplication by the complex constant (with respect to t), H(s):

y(t) = H(s)est.

This is nice as it shows that inputs of the form est are the “eigensignals” of LTI systems
where as for each s, H(s) are “eigenvalues”.

Observe that H(s) is nothing more than the Laplace transform of the impulse re-
sponse. It is central to control and system theory and deserves a name: the transfer
function. When the input signal under consideration has real part σ = 0, i.e. u(t) = eiωt

then the output can still be represented interns of the transfer function:

y(t) = H(iω)eiwt

In this case y(t) is referred to as the frequency response of the harmonic input eiωt

at frequency ω. In this case, F (ω) = H(iω) is the Fourier transform of the impulse
response. Note that both the Fourier and Laplace transform are referred to in practice
as the transfer function. Further, analogies exist in discrete time systems (e.g. the
Z-transform).

In general since we have seen that y(t) =
(
u ∗ h

)
(t), we have that,

Y (s) = U(s)H(s).

So the transfer function, H(s) can also be viewed as,

H(s) =
Y (s)

U(s)
.

This takes practical meaning for pure imaginary s = iω as it allows to measure H(iω)
based on the ratios of Y (iω) and U(iω). The frequency response of a system is the
Fourier transform of the impulse response.
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Response to Sinusoidal Inputs

As an illustration, take a system with rational transfer function, H(s), and assume H(s)
has distinct poles, p1, . . . , pn. Assume a sinusoidal input u(t) = sin(ω0t)1(t) is applied.
The Laplace transform of the input is,

U(s) =
ω0

s2 + ω2
0

.

So the Laplace transform of the output is,

Y (s) = H(s)
ω0

s2 + ω2
0

.

Now applying a partial fraction expansion we will get the following form

Y (s) =
n∑
i=1

αi
s− pi

+
α0

s+ iω0

+
α0

s− iω0

.

Exercise 29 Carry out the above to find α0, α1, α2, α3 for some explicit H(s) of your
choice having 3 distinct poles with negative real part.

Inverting Y (s) we get,

y(t) =
n∑
i=1

αie
pit + 2|α0|cos(ω0t+ φ), t ≥ 0,

with,

φ = tan−1
(Im(α0)

Re(α0)

)
.

Now if all pi < 0 the system will represent stable behavior and as t grows the output
will be determined by the sinusoidal term.

Exercise 30 Continuing the previous exercise, find φ and plot the system output as to
illustrate convergence to the pure sinusoidal term.

Exercise 31 Now make/generate (probably using some software) a Bode plot of your
system and relate the result of the previous exercise to the Bode plot. I.e. what is the
frequency response for ω0.
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13 Stability based on pole locations

When we study general linear systems we will relate BIBO stability to internal stability.
The latter term is defined for systems with rational transfer functions as follows: A
system is internally stable if the locations of all poles are in the left hand plane.

A classic criterion for this is the Routh-Hurwitz Test: We consider a polynomial
q(s) = qns

n
+ . . . . . . . . . + q1s + a0 and are interested to see if Re(qi) < 0 for i = 1, . . . , n.

In that case call the polynomial Hurwitz.
See section 7.3, pp 247 of [PolWil98] (handout).

Exercise 32 Follow example 7.3.2 of [PolWil98]. Then choose a different polynomial
of similar order and carry out the test again. Compare your results to the actual roots
of the polynomial (which you can find using some software).

14 First and Second Order Systems

A first order LTI system can be described by,

1

λ
ẏ(t) + y(t) = u(t),

for some scalar λ. Thus the impulse response is the solution of,

1

λ
ḣ(t) + h(t) = δ(t), h(0−) = 0,

which is,
h(t) = λe−λt1(t).

Exercise 33 Check that this is indeed the solution (use properties of δ(t)).

The transfer function of this system is,

H(s) =
λ

s+ λ
.

It has a pole at s = −λ and thus the ROC is Re(s) > −λ. So for λ > 0 the system is
stable.

A second order LTI system (with complex conjugate roots) is generally a more in-
teresting object. It can be described by,

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = ω2

nu(t).

The two positive parameters have the following names:
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• The parameter ωn is called the undamped natural frequency.

• The parameter ζ is called the damping ratio.

Exercise 34 Show that the transfer function of this system is (apply the Laplace trans-
form to the ODE with input δ(t)).

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

.

The transfer function may be factored as follows:

H(s) =
ω2
n

(s− c1)(s− c2)
,

where c1,2 = −ζωn ± ωn
√
ζ2 − 1.

Exercise 35 Assume ζ 6= 1. Carry out partial fraction expansion to get,

H(s) =
M

s− c1
− M

s− c2
,

where M = ωn

2
√
ζ2−1

.

Exercise 36 Use the above to show that if ζ 6= 1,

h(t) = M(ec1t − ec2t)1(t).

Exercise 37 Assume ζ = 1. Find H(s) and h(t).

Exercise 38 Investigate (numerically) h(t) and the poles of H(s) for a variety of pa-
rameter combinations. Explain now the names of ωn and ζ.

15 Feedback Configurations of LTI SISO Systems

The next unit dealing with classic control methods generally deals with designing LTI
controllers G1 and G2 configured as in Figure 2. The whole system relating output y
to input reference r is then also an LTI and may be analyzed in the frequency (or ‘s’)
domain easily.

The idea is as follows is to find the H̃(s) that satisfies,

Y (s) = R(s)H̃(s).
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G1(s) H(s)
u

G2(s)

r e y

−

ym

Figure 2: A plant, H(s) is controlled by the blocks G1(s) and G2(s) they are both
optional (i.e. may be set to be some constant K or even 1.

This can be done easily:

Y (s) = U(s)H(s) = E(s)G1(s)H(s) =
(
R(s)−Ym(s)

)
G1(s)H(s) =

(
R(s)−G2(s)Y (s)

)
G1(s)H(s).

Solving for Y (s) we have,

Y (s) = R(s)
G1(s)H(s)

1 +G2(s)G1(s)H(s)
.

Hence the feedback system is:

H̃(s) =
G1(s)H(s)

1 +G2(s)G1(s)H(s)
.

Exercise 39 What would be the feedback system if there was positive feedback instead
of negative. I.e. if the circle in the figure would have a ‘+’ instead of ‘-‘?
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