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1 About

This unit (composed of 9 lecture hours) is the center of the course. It is all about linear
input–state–output systems of the form

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

or
x(n+ 1) = Ax(n) +Bu(n)

y(n) = Cx(n) +Du(n)
. (1)

The focus is mostly on the continuous time version
(
u(t), x(t), y(t)

)
, yet key results for

the discrete time version,
(
u(n), x(n), y(n)

)
, are summarised,

Here A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. So the dimension of the state
(x) is n, the dimension of the input (u) is m and the dimension of the output (y) is p.
The previous two units were about m = 1 and p = 1 (SISO systems). Note that in such
systems the state may (and typically is) multi-dimensional - yet we did not explicitly
consider and discuss the state.

We refer to the systems in (1) as the continuous (A,B,C,D) system and the discrete
(A,B,C,D) system respectively.

Note that some of the results we present naturally extend to the time dependent
cases, where the matrices A,B,C and D are allowed to depend on time. Nevertheless,
we mostly focus on the time-independent case as presented in (1), except for the first
section which deals with general (not necessarily linear) finite dynamical systems. I.e.
ordinary differntial equation (ODE) systems.

2 ODE Systems

Basic Definitions

For x ∈ Rn and f : Rn+1 → Rn, we call the system of equations,

ẋ = f(t, x), (2)

a system of n first-order ordinary differential equations. Let D ⊂ Rn+1 be an open,
nonempty and connected set such that f(·) is continuous in D. We call D a domain of
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(2). A solution of (2) in the domain D is, some φ : Rn → Rn, defined on an interval
J = (a, b) such that, (

t, φ1(t), . . . , φn(t)
)
∈ D, ∀t ∈ J ,

and φ(·) is continuously differentiable on J with,

φ̇(t) = f
(
t, φ1(t), . . . , φn(t)

)
, ∀t ∈ J .

The system is called an initial value problem if it is specified as follows:

ẋ = f(t, x), x(t0) = x0. (3)

A solution of (3) in the domain D is as defined above, a-long with the requriment that,

φ(t0) = x0.

Initial value problems may be equivalently expressed by the integral equation:

φ(t) = x0 +

∫ t

t0

f
(
s, φ(s)

)
ds

Linear ODE Systems

When f(t, x) in the above is of the form A(t)x + g(t) the system is a linear system.
If g(t) ≡ 0 then the system is called homogeneous, otherwise it is nonhomogeneous. If
A(t) ≡ A then the system is called time-independent (or sometime autonomous).

That is, the linear, time-independent, homogeneous system is,

ẋ = Ax, x(0) = x0, (4)

with A ∈ Rn×n. We shall typically refer to the system (4) in short as the autonomous
system.

We shall also focus on the system,

ẋ = Ax+ g(t), x(0) = x0, (5)

and shall typically refer to the system (5) in short as the nonhomogeneous system.

Higher Order ODEs

Higher order ODEs are not harder than the ODE systems presented above. This can
be shown for general ODEs, yet for simplicity we focus on the linear, constant coef-
ficient (time-independent) case. Consider linear, autonomous, homogeneous ordinary
differential equation of order n:

y(n)(t) + an−1y
(n−1)(t) + . . .+ a1y

(1)(t) + a0y(t) = 0. (6)
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Set now,
y(·) = x1(·), y(1)(·) = x2(·), . . . y(n−1)(·) = xn(·),

and consider the autonomous system,


ẋ1(t)
ẋ2(t)

...
ẋn−1(t)
ẋn(t)

 =



0 1 0 0
0 0 1 0

. . .
. . .

0 1
−a0 −a1 · · · · · · −an−1 −1





x1(t)
x2(t)
x3(t)

...

...
xn(t)


.

Then it is clear that solutions of the n′th dimensional system also satisfy the (6). Note
that the above matrix is called a companion matrix associated with (a0, . . . , an−1).

Properties of Solutions: Existence and Uniqueness

Example 2.1 Take ẋ = x1/3, x(0) = 0, then there are at least two solutions:

φ(t) = 0, and φ(t) =
(2

3
t
)3/2

.

Example 2.2 Take ẋ = ax, x(0) = 0, then there is a unique solution,

φ(t) = eat.

So when are we guaranteed to have unique solutions? We now present a series of
general results about ODEs. We do not cover the proofs.

Theorem 2.3 (Cauchy-Peano Existance Theorem) Let f(·) be continuous in a do-
main D, then for any (t0, x0) ∈ D, the initial value problem has a solution defined on
[t0, t0 + c) for some c > 0.

Theorem 2.4 Let f(·) be continuous in a domain D. If for every compact set K ⊂ D,

||(f(t, x)− f(t, y)|| ≤ LK||x− y||,

for all (t, x), (t, y) ∈ K where LK > 0 is a constant (allowed to depend on K) then the
intitial value problem has at most one solution on any interval [t0, t0 + c), c > 0.

Note that if f(·) is continuously differentiable on D then the above local Lipschitz con-
dition is automatically satisfied.
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Theorem 2.5 Let f(·) be continuous in some domain D = J × Rn and assume that
f(·) satisfies the local Lipschitz condition. Then for any (t0, x0) ∈ J × Rn, the initial
value problem has a unique solution that exists on the entire interval J .

Consider now the system,
ẋ = A(t)x+ g(t),

Theorem 2.6 Let A(t) and g(t) be continuous on some open interval J , then for any
t0 ∈ J and x0 ∈ Rn the above system has a unique solution satisfying x(t0) = x0. The
solution exists on the entire interval J and is continuous in (t, t0, x0).

This theorem is an application of the previous theorems (and others), where the
essence is to verify the Lipschitz condition. Denote, f(t, x) = A(t)x+ g(t) then:

||f(t, x)− f(t, y)||1 = ||A(t)(x− y)||1 ≤ ||A(t)||1||x− y||1 ≤
( n∑
i=1

max
1≤j≤n

|aij(t)|
)
||x− y||1.

Picard Iterations

Given an initial value problem, a Picard iteration sequence is a sequence of functions on
[t0, t0 + c] constructed as follows:

φ0(t) = x0

φm+1(t) = x0 +

∫ t

t0

f
(
s, φm(s)

)
ds, m = 0, 1, 2, 3, . . .

Theorem 2.7 If f(·) satisfies the local Lipschitz condition on some compact set K ⊂ D
then the successive approximations φm, m = 0, 1, 2, . . . exist on [t0, t0+c], are continuous
there and converge uniformly as m→∞ to the unique solution φ(·). I.e. for every ε > 0
there exists N such that for all t ∈ [t0, t0 + c],

||φ(t)− φm(t)|| < ε,

whenever m > N .

3 eAt Through Picard Iterations

To do: Touch up to match what was done on board during class.
It is useful to briefly consider the non-homogeneous and time-dependent (non-autonomous)

system:
ẋ = A(t)x+ g(t), x(t0) = x0.
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As can be seen by successive Picard iterations, the solution of the above system is:

φ(t, t0, x0) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)g(s)ds,

where the state transition matrix Φ(t, t0) is defined as follows:

Φ(t, t0) = I+

∫ t

t0

A(s1)ds1+

∫ t

t0

A(s1)

∫ s1

t0

A(s2)ds2 ds1+

∫ t

t0

A(s1)

∫ s1

t0

A(s2)

∫ s2

t0

A(s3)ds3 ds2 ds1

. . . . . . . . .+

∫ t

t0

A(s1)

∫ s1

t0

A(s2) . . . . . .

∫ sm−1

t0

A(sm)dsm dsm−1 . . . ds1 + . . . . . .

The above expression is called the is the Peano-Baker series. Note that, Φ(t, t) = I.
When differentiating the Peano-Baker series with respect to t it is evident that,

Φ̇(t, t0) = A(t)Φ(t, t0).

In the time-independent case of A(t) = A, the m’th term in the Peano-Baker series
reduces to:

Am
∫ t

t0

∫ s1

t0

∫ s2

t0

. . .

∫ sm−1

t0

1dsm . . . ds1 =
(t− t0)m

m!
Am.

Hence in this case, the state transition matrix reduces to the form,

Φ(t, t0) =
∞∑
k=1

(t− t0)k

k!
Ak

Theorem 3.1 Let A ∈ Rn×n (or A ∈ Cn×n). Denote,

Sm(t) =
m∑
k=1

tk

k!
Ak.

Then each element of the matrix Sm(t) converges absolutely and uniformly on an finite
t ∈ R interval containing 0, as m→∞.

We can thus define the matrix exponential matrix for any t ∈ R as,

eAt =
∞∑
k=1

tk

k!
Ak.

Thus for the linear autonomous system, we have,

Φ(t, t0) = eA(t−t0). (7)
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4 Basic Descriptions of the (A,B,C,D) Systems

We first consider the time-varying system,

ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)

,

with x(t0) = x0. In this case,

y(t) = C(t)Φ(t, t0)x0 + C(t)

∫ t

t0

Φ(t, s)B(s)u(s)ds+D(t)u(t).

Specializing to the (time-invariant), (A,B,C,D) system we get from (7) that,

y(t) = CeA(t−t0)x0 + C

∫ t

t0

eA(t−s)Bu(s)ds+Du(t).

For the discrete time (A,B,C,D) system with x(n0) = x0 we get by similar devel-
opment:

y(n) = CAn−n0x0 + C
n−1∑
j=n0

An−(j+1)Bu(j) +Du(n).

Exercise 4.1 Verify using the above (discrete and continuous time) descriptions that if
O(·) is taken as the input-output mapping, then,

O
(
α1u1 + α2u2

)
= α1O

(
u1

)
+ α2O

(
u2

)
.

The definitions of memoryless, causality and time-invariance follow for these MIMO
systems as they did for the SISO systems of unit 2.

The development (or treatment) of the impulse response and transfer function follows
for MIMO systems in a similar ways to SISO systems. First consider the operator/system/input-
output mapping O:

y(·) = O
(
u(·)

)
.

We assume it admits an integral representation,

y(t) = O
(
u(·)

)
(t) =

∫ ∞
−∞

h(t− τ)u(τ)dτ = (h ∗ u)(t),

with h(t) ∈ Rp×n being the impulse response matrix. Note that for inputs u(t) that have
coordinates 0 except for the j’th coordinate, uj(t), the i’th component of the output has
the form,

yi(t) =

∫ ∞
−∞

hij(t− τ)uj(τ)dτ,
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as a SISO system with impulse response hij(t).
The system is causal if and only if h(t) = 0p×n for t < 0 and thus for inputs with

positive support,

y(t) =

∫ t

0

h(t− τ)u(τ)dτ.

The relation of convolutions and Laplace transforms exploited in Unit 2, carries over
easily to the non-scalar version here. If the Laplace transform, H(s) of h(t) exists then,

ŷ(s) = H(s)û(s).

A matrix Laplace transform such as this is simply a Laplace transform of each of the
elements. In this case, H(s) is the transfer function matrix.

We can further get the following useful representations:

h(t) = 1p×p(t)
(
CeAtB +Dδm×m(t)

)
,

where we use a diagonal matrix of m delta-functions, δm×m(t). Our treatment here is
again not rigorous.

Of independent interest, note that in the SISO case, C is 1 × n (single output),
B is n× 1 (single input) and D is a scalar. In this case if det(A) 6= 0, the step-response
for t > 0 is,

s(t) = (1∗u)(t) = D+C

∫ t

0

eAτdτ = D+CA−1(eAt−I)B = D−CA−1B+B′eA
′tA′−1C ′.

In the study of matrix-analytic methods in applied probability, the above is essentially
the form of the so-called Matrix Exponential (ME) probability distribution. In that case,
it is generally an open problem to characterize the (An×n, Bn×1, C1×n, D1×1) systems for
which s(t) is monotonic.

The Resolvent

The Laplace transform H(s) takes on a very specific form for (A,B,C,D) systems.
Consider first the system autonomous system ẋ = Ax with x(0) = x0. In this case,

sx̂(s)− x0 = Ax̂(s),

and thus for s that are not eigenvalues of A,

x̂(s) = (sI − A)−1x0.

Hence the Laplace transform of eAt is (sI − A)−1. This is called the resolvent of the
system.

The same computations can be carried out for the (A,B,C,D) system to get,

H(s) = C(sI − A)−1B +D.
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The Similarity Transform and Equivalent Representations

Given P ∈ Rn×n, with det(P ) 6= 0, we can change the coordinates of the state-space
based on the similarity transform,

Px̃ = x.

The resulting system is, (
P−1AP, PB, CP,D

)
. (8)

Both systems have the same external representations (i.e. same impulse response/transfer
function) and are thus called equivalent systems.

Sampling a Continuous Time System

Consider a continuous time (A,B,C,D) system that is sampled at time intervals of T .
In this case, the discrete time system,(

eAT ,

∫ T

0

eAτdτB, C, D
)

agrees with the continuous time one at the sampling points.

5 Computation of eAt - Understanding “Diagonal-

ization”

Simple Evaluation Examples

Let,

A =

[
0 0
γ 0

]
,

then,

eAt = I + tA+
t2

2
A2 + . . . = I +

[
0 0
tγ 0

]
+ 02×2 =

[
1 0
tγ 1

]
Let,

A = diag(γ1, . . . , γn),

i.e. the diagonal matrix with diagonal elements γ1, . . . , γn, then:

eAt = diag
( ∞∑
k=1

tk

k!
γk1 , . . . . . . . . . ,

∞∑
k=1

tk

k!
γkn

)
= diag

(
eγ1t, . . . . . . , eγnt

)
.
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Simple Diagonalization

To be updated

When is a Matrix Diagonalizable?

To be updated.

Non-Diagonalizable systems and Jordan Form

To be updated.

The Cayley-Hamilton Theorem Method

Theorem 5.1 Every square matrix satisfies its characteristic polynomial equation.

Proof To be updated �

A consequence of of the Cayley-Hamilton Theorem with respect to eAt is that there exist
scalar functions,

α1(t), . . . , αn−1(t),

such that,

eAt =
n−1∑
i=0

αi(t)A
i.

The Laplace Transform of the State Transition Matrix

Since,
L
(
eAt) = (sI − A)−1,

we can get the i, j’s element of eAt by inverting the corresponding element of the resol-
vent. It is useful to look at an example:

Example 5.2 Consider,

A =

[
−1 3
0 1

]
.

Then,

(sI−A)−1 =

[
s+ 1 −3

0 s− 1

]−1
=

1

(s+ 1)(s− 1)

[
s− 1 3

0 s+ 1

]
=

[
1
s+1

3/2
s−1 + 3/2

s+1

0 1
s−1

]
So,

eAt =

[
e−t 3

2
(et − e−t)

0 et

]
.
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6 Stability Based on Modes (w-out Lyapounov)

Some Stability Definitions

We now discuss the system,

ẋ(t) = Ax(t), , x(0) = x0, (9)

and see when it is stable. As a brief introduction, consider the more general system,

ẋ(t) = f
(
x(t)

)
, x(0) = x0.

and assume it has a unique solution φ(t) and that there is an equilibrium point at the
origin. I.e,

f(0) = 0.

This obviously holds for the linear case (9). Alternativly, for the general system with
f(·), if there is an equilibrium point x̃0, one may make a change of coordinates so that
in the new system 0 is an equilibrium point.

We say the equilibrium point, x = 0 is stable if for every ε > 0 there exists a δ > 0
(that may depend on ε) such that,

||φ(t)|| < ε, ∀t ≥ 0,

whenever, ||x0|| < δ.
Note that in this definition, ε and δ are not necessarily quantifies that are “considered

small” (this is different than the normal use of ε, δ in say the definition of the limit of a
function at a point).

A stronger notion of stability is asymptotic stability. We say that an equilibrium at
x = 0 is said to be asymptotically stable if it is stable and further there is an η > 0 such
that,

lim
t→∞

φ(t) = 0,

whenever ||x0|| < η.
An equilibrium point is unstable if it is not stable.

Exercise 6.1 Spell out the definition of an unstable system. I.e.“ there exists and ε > 0
such that ... ”.

Modes

We recall the system, (9) and denote,

det(sI − A) =
σ∏
i=1

(s− λi)ni ,
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where λ1, . . . , λσ are distinct eigenvalues, each with a multiplicity of ni (i.e.
∑σ

i=1 ni =
n).

We can show that,

eAt =
σ∑
i=1

ni−1∑
k=1

Aikt
keλit,

with the matrices Aik, i = 1, . . . , σ and for k = 0, . . . , ni − 1,

Aik =
1

k!(ni − 1− k)!
lim
s→λi

dni−1−k

dsni−1−k
(s− λi)ni(sI − A)−1

We call each of the terms,
Aikt

keλit,

a mode of the system. The system with state space dynamics A ∈ Rn×n has exactly n
modes.

The above representation can be derived by partial fraction expansion of the resol-
vent:

(sI − A)−1 =
σ∑
i=1

ni−1∑
k=1

(k!Aik)(s− λi)−(k+1).

When all eigenvalues of A are distinct (σ = n) we get,

eAt =
n∑
i=1

Aie
λit.

In this case, Ai = viṽi where vi and ṽ′i are the right and left eigenvectors of A corre-
sponding to λi.

Stability Based on Modes

The stability of (9) is determined by the modes as follows:

1. It is asymptotically stable if and only if all eigenvalues of A have negative real part.

2. It is stable if and only if all eigenvalues are non-positive (i.e. some may be 0) and
for eigenvalues, λj, with Reλj = 0 and multiplicity nj,

lim
s→λj

dni−1−k

dsni−1−k
(s− λi)ni(sI − A)−1 = 0, k = 1, . . . , nj − 1.

3. The system is unstable if and only if (2) is not true.
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7 Controllability and Observability

In this section we briefly introduce the two regularity conditions: controllability and
observability (and the similar terms reachability and constructibility). The key results
are briefly summarized with anticipation of the next two sections. A deeper look into
controllability, observability and related forms follows later on.

With respect to controllability we consider both the discrete time system:

x(n+ 1) = Ax(n) +Bu(n),

and the continuous time system:

ẋ(t) = Ax(t) +Bu(t).

With respect observability we need to also consider the,

y(τ) = Cx(τ) +D(τ),

part, where τ is either a discrete or continuous time index.

Controllability in Brief

A state xd ∈ Rn is said to be reachable (synonymous with controllable-from-the-origin)
if there exists an input u(·) that transfers x(t) from the zero state to xd in some finite
time. A state xs ∈ Rn is said to be controllable if there exists an input that transfers
the state from xs to the zero state in some finite time. These definitions are applicable
to both discrete and continuous time systems.

As is evident later on, while reachability always implies controllability, controllability
implies reachability only when the state transition matrix, Φ(·) is nonsingular. This is
always true for continuous time systems but for discrete time systems requires that A be
non-singular. We will mostly ignore discrete time systems with singular A and thus treat
reachability of a state and controllability of a state as essentially synonymous terms.

The set of all reachable/controllable states is called the reachable / controllable sub-
space of the system (it will be evident that this set is a linear sub-space of Rn).

We say the whole system is reachable / controllable if any state is reachable /control-
lable, i.e. if the reachable / controllable subspace is Rn. In this case we may also say
that the pair (A,B) is reachable / controllable.

A key structure in the development is the matrix conk(A,B), defined for positive
integer k as follows:

conk(A,B) =
[
B,AB,A2B, . . . , Ak−1B

]
∈ Rn×mk.

The following are important properties of conk(A,B):
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Lemma 7.1 For k ≥ n, range
(

conk(A,B)
)

= range
(

conn(A,B)
)

. For k < n, range
(

conk(A,B)
)
⊂

range
(

conn(A,B)
)

.

Proof The statement for k < n is obvious as adding columns to a matrix can only
increase the dimension of its range.

Now the Cayley-Hamilton theorem states that,

An = −αn−1
αn

An−1 − . . .− α1

αn
A− α0

αn
I,

where αi are the coefficients of the characteristic polynomial of A with αn 6= 0. Alter-
natively,

AnB = −α0

αn
B − α1

αn
AB − . . .− αn−1

αn
An−1B.

So the additional m columns in conn+1(A,B) are linear combinations of the columns
of conn(A,B). Further the additional m columns in conn+2(A,B) (that are not in
conn(A,B)) are,

AAnB = −α0

αn
AB − α1

αn
A2B + . . .+−αn−2

αn
An−1B.− αn−1

αn
AnB.

and these are linear combinations of columns of conn+1(A,B). Continuing by induction
the result is proved. �

To see the source of the conk(A,B) matrix, consider the discrete time system with
k-step input sequence reversed in time:

uk =
[
u(k − 1)′, u(k − 2)′, . . . , u(0)′

]′ ∈ Rkm.

Since the evolution of state is,

x(k) = Anx(0) +
k−1∑
i=0

Ak−(i+1)Bu(i),

we have that with input u over time steps, 0, 1, . . . , k − 1, the state at time k can be
represented by:

x(k) = Akx(0) + conk(A,B)uk. (10)

Hence the conk(A,B) matrix captures the propagation of state in discrete time systems.
As we shall see, it is also used in continuous time systems.

The key condition for reachability is based on the so-called controllability matrix:

con(A,B) := conn(A,B).

I.e. it is the matrix that can be used to examine the state propogation over inputs for
a number of time steps equal to the dimension of the state of the system.
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Theorem 7.2 A discrete system is reachable if and only if rank
(

con(A,B)
)

= n.

Proof
It is possible to transfer from state xs to state xd in k steps if an only if there exists

an input sequence, u such that

conk(A,B)uk = xd − Akxs.

That is for reachability, set xs = 0 and the system is reachable if and only if there is an
integer k, such that,

xd ∈ range
(

conk(A,B)
)
.

Now if rank
(

con(A,B)
)

= n then xd can be reached in n steps and thus it is reachable.

Conversley if it is reachable, since xd is arbitrary, there is a k for which,

rank
(

conk(A,B)
)

= n.

But then by Lemma 7.1, the above must be true for k = n.
�

For continuous time systems, conk(A,B) does not have the same direct meaning as
in (10) yet plays a central role. Assume x(0) = xs and an input {u(t), t ∈ [0, T ]} is
applied such that x(T ) = xd, then,

xd = eATxs +

∫ T

0

eA(T−τ)Bu(τ)dτ.

The reachability sub-space during time [0, T ] is then:

RT :=
{
x ∈ Rn : ∃ {u(t), t ∈ [0, T ]}, such that, x =

∫ T

0

eA(T−τ)Bu(τ)dτ
}
.

Lemma 7.3 For any T > 0,

RT ⊂ range
(

con(A,B)
)
.

Proof As we saw earlier, using the Cayley-Hamilton theorem, there exist scalars αi(t),
i = 0, . . . , n− 1, such that

eAt = α0(t)I + α1(t)A+ . . .+ αn−1(t)A
n−1.

Thus,

x =

∫ T

0

eAtBu(T − τ)dτ =

∫ T

0

( n−1∑
i=0

αi(τ)Ai
)
Bu(T − τ)dτ

14



=
n−1∑
i=0

AiB

∫ T

0

αi(τ)u(T − τ)dτ = con(A,B)r,

where

r =


∫ T
0
α1(τ)u(T − τ)dτ

...

...∫ T
0
αm(τ)u(T − τ)dτ

 ,
Hence x(t) ∈ range

(
con(A,B)

)
. �

Theorem 7.4 A continuous time system is reachable if and only if rank
(

con(A,B)
)

=
n.

Proof The system is reachable if and only if rank
(
RT

)
= n for some T . Suppose first

that rank
(

con(A,B)
)
6= n then by the lemma above Rn \ RT 6= ∅ hence the system is

not reachable. Thus if the system is reachable, rank
(

con(A,B)
)

= n.

To show the other direction we denote for any T , the n× n matrix,

WT =

∫ T

0

e−AτBB′e−A
′τdτ.

We first show WT is non singular. Suppose there is a vector a ∈ Rn such that, WT a = 0,
then a′WT a = 0 or, ∫ T

0

a′e−AτBB′e−A
′τa dτ = 0.

The integrand is of the form c(t)′c(t) where c(t) = B′e−A
′ta. Thus the integrand is

nonnegative and thus for the integral to vanish we must have for all t ∈ [0, T ],

a′e−AtB = 0.

Take now derivatives with respect to t at t = 0,

a′B = 0,

a′AB = 0,

a′A2B = 0,
...

a′An−1B = 0.

15



Thus a is orthogonal to all columns of con(A,B) and thus a = 0. Hence thus WT is
non-singular.

Now for a given xd, select any T > 0 and set,

u(t) = B′e−A
′tW−1

T e−ATxd.

Thus,

x(T ) =

∫ T

0

eA(T−t)Bu(t)dt =

∫ T

0

eA(T−t)BB′e−A
′tW−1

T e−ATxddt

= eAT
∫ T

0

e−AtBB′e−A
′tdt W−1

T e−ATxd = eATWTW
−1
T e−ATxd = xd.

�

Note: The above proof actually shows that to reach xd in T time units, an input
that can be applied over [0, T ] is,

u(t) = B′e−A
′t
(∫ T

0

e−AτBB′e−A
′τdτ

)−1
e−ATxd.

Observability in Brief

A system is said to be observable if knowledge of the outputs and the inputs over some
finite time interval is enough to determine the initial state x(0). For a discrete time
system this means that x(0) can be uniquely identified based on y(0), y(1), . . . , y(N −1)
and u(0), . . . , u(N − 1) for some finite N . For continuous time systems it means that
x(0) can be uniquely identified by {y(t), t ∈ [0, T ]} and {u(t), t ∈ [0, T ]} for some finite
T .

The development of observability criteria parallels that of controllability. For discrete
time systems,

y(k) = CAkx(0) +
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k).

or alternatively define,

ỹ(k) = y(k)−
( k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k)
)
,

and,

obsk(A,C) =


C
CA
CA2

...
CAk−1

 ∈ Rpk×n.
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Then,

obsk(A,C)x(0) =


ỹ(0)
ỹ(1)

...
ỹ(k − 1)

 . (11)

The system is thus observable in k time units if (11) has the same unique solution, x(0)
for any k.

We define the observability matrix as :

obs(A,C) := obsn(A,C).

Theorem 7.5 A discrete or continuous system (A,B,C,D) is observable if and only if,

rank
(

obs(A,C)
)

= n.

Duality between Controllability and Observability

Consider the “usual” system,

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

. (12)

The dual system is,
ẋ(t) = A′x(t) + C ′u(t)
y(t) = B′x(t) +D′u(t)

. (13)

Notice that in the dual system, the state dimension is still n, but the dimensions of the
input and the output were switched: The new input dimension is p and the new output
dimension is m. The same definition holds for discrete time systems.

Theorem 7.6 The system (12) is controllable if and only if the dual system (13) is
observable. Similarly the system (12) is observable if and only if the dual system (13) is
controllable.

Proof We have that,

con(A,B) = obs(A′, B′)′, obs(A,C)′ = con(A′, C ′).

�
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8 Linear State Feedback with Full State Information

The linear state feedback law is:

u(t) = Fx(t) + r(t),

for some F ∈ Rm×n and r(t) ∈ Rm some external input vector refereed to as the reference.
We often assume in the analysis that r(t) ≡ 0.

So we get,

ẋ(t) = (A+BF )x(t) +Br(t)

y(t) = (C +DF )x(t) +Dr(t)

Theorem 8.1 Given A ∈ Rn×n and B ∈ Rn×m there exists F ∈ Rm×n such that the n
eigenvalues of A + BF are assigned to arbitrary, real or complex conjugate locations if
and only if (A,B) is a controllable pair.

Proof
To be updated.

�

Choosing F Using Controller Form

To be updated.

9 Observers

We now show how to design a system based on the original system whose state is denoted
by x̂ and is designed so that x̂(t) is an estimate of the (generally unobservable) x(t). This
simple (yet very powerful idea) is called the Luenberger observer. The basic equation in
the design of the “observer system” is this:

˙̂x(t) = Ax̂(t) +Bu(t) +K(y − ŷ),

where,
ŷ(t) = Cx̂(t) +Du(t).

Combining we have,

˙̂x(t) = (A−KC)x̂(t) +
[
B −KD,K

] [ u
y

]
ŷ = Cx̂+

[
D, 0

] [ u
y

]
18



Thus the Luenberger observer system, associated with the system (A,B,C,D) is the
system (A − KC,

[
B − KD,K

]
, C,

[
D, 0

]
) whose input is [u′, y′], i.e. the input of the

original system together with the output of the original system.
As opposed to the original system which typical has some physical manifestation, the

observer is typically implemented in one way or another (often using digital computers).
The state of the observer, x̂(t) is thus accessible by design and as we show now can yield
a very good estimate of the actual (non-fully accessible) state, x(t).

The error between the state and the estimate is e(t) = x(t)− x̂(t). Thus,

ė(t) = ẋ(t)− ˙̂x(t) = (Ax(t) +Bu(t))−
(
Ax̂(t) +Bu(t) +K(y(t)− ŷ(t)

)
= (Ax(t) +Bu(t))−

(
Ax̂(t) +Bu(t) +K((Cx(t) +Du(t))− (Cx̂(t) +Du(t))

)
= (A−KC)(x(t)− x̂(t)) = (A−KC)ė(t).

Hence the estimation error associated with the Luenberger observer behaves like the
autonomous system,

ė(t) = (A−KC)e(t).

If K is designed so that (A−KC) has eigenvalues strictly in the LHP then e(t)→ 0 as
t→∞ yielding an asymptotic state estimator. I.e. the estimation error would vanish as
time progresses!!!! This is for any initial condition of both the system, x(0) and the the
observer x̂(t).

It turns out that the observabillity condition is exactly the condition that specifies
when the autonomous system (A−KC) can be shaped arbitrarlly:

Theorem 9.1 There is a K ∈ Rn×p so that eigenvalues of A − KC are assigned to
arbitrary locations if and only if the pair (A,C) is observable.

Proof The eigenvalues of (A−KC)′ = A′−C ′K ′ are arbitrarily assigned via K ′ if and
only if the pair (A′, C ′) is controllable (Theorem 8.1). This by duality (Theorem 7.6)
occurs if and only if (A,C) is observable. �

10 Observer + State Feedback

Now that we know about state feedback and observers, we can combine them practically
into a controlled system that has an observer for generating x̂(t) and then uses x̂(t) as
input to a “state feedback” controller. This means that the input is,

u(t) = Fx̂(t) + r(t). (14)

Remember that the observer follows,

˙̂x(t) = Ax̂(t) +Bu(t) +K
(
y(t)− ŷ(t)

)
.
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where,
ŷ(t) = Cx̂(t) +Du(t).

Combining the above with y(t) = Cx(t) +Du(t) we get,

˙̂x(t) = (A−KC)x̂(t) +KCx(t) +Bu(t).

Hence if we now combine (14) and look at the compensated system (original plant to-
gether with a state feedback law operating on an observer estimate), we get:[

ẋ(t)
˙̂x(t)

]
=

[
A BF
KC A−KC +BF

] [
x(t)
x̂(t)

]
+

[
B
B

]
r(t)

y(t) =
[
C DF

] [ x(t)
x̂(t)

]
+Dr(t)

Thus the compensated system is of state dimension 2n and has as state variables
both the state variables of the system x and the observer “virtual”-state variables x̂.

It is useful to apply the following similarity transform to the system:

P

[
x
x̂

]
=

[
I 0
I −I

] [
x
x̂

]
=

[
x
e

]
Hence as in (8), the resulting system is:

[
ẋ(t)
ė(t)

]
=

[
A+BF −BF

0 A−KC

] [
x(t)
e(t)

]
+

[
B
0

]
r(t)

y(t) =
[
C +DF −DF

] [ x(t)
e(t)

]
+Dr(t)

Exercise 10.1 Show that the system above (with state (x,e) ) is not fully controllable.

The reason for not being fully controllable is that the state at the coordinates of
corresponding to e(t) should converge to 0, independently of r(t).

Notice that,

det
([ A+BF −BF

0 A−KC

])
= det

(
sI − (A+BF )

)
det
(
sI − (A−KC)

)
.

This implies that the behavior (fully governed by the eigenvalues) of the compensated
system can be fully determined by selecting F and K separately!!!!

This is called the separation principle and it has far reaching implications: One
may design the controller and the state estimator in separation and then combine. The
dynamics of one will not affect the dynamics of the other.
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