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Unit Outline

I Introduction to the course: Course goals, assessment, etc...

I What is “Control Theory”

I A bit of jargon, history and applications

I A survey of the mathematical problems handled in this course:
Units 2 – 11



Course Goal

I A “mathematically mature” student will get a taste of several
of the key paradigms and methods appearing in Control
Theory. As well as in Systems Theory.

I Following this course the student will have capacity to
independently “dive deeper” into enginerring control pardigms
and/or optimal control theory.



Assessment

I 7 HW

I 4 Quizzes

I Final course summary



Mode of Presentation

I Board

I Lecture Notes

I Slides (presentation)

I or... mixes of the above



What is “Control Theory”

Hard to find a precise definition. So here are some terms very
strongly related:

I Dynamical systems and systems theory

I Linear vs. non-linear systems

I Open Loop vs. Closed Loop (Feedback)

I Optimal trajectories

I Trajectory tracking

I Disturbance rejection

I Stabilization vs. fine tuning

I Chemical systems, Electrical systems, Mechanical systems,
Biological systems, Systems in logistics...

I Adaptive control and learning



A system (plant)

I state: x ∈ Rn

I input: u ∈ Rm

I output: y ∈ Rk

The basic system model:

ẋ(t) = f
(
x(t), u(t), t

)
,

y(t) = h
(
x(t), u(t), t

)
.

Or in discrete time,

x(n + 1) = f
(
x(n), u(n), n

)
,

y(n) = h
(
x(n), u(n), n

)
.



Open loop control

ẋ(t) = f
(
x(t), u(t), t

)
,

y(t) = h
(
x(t), u(t), t

)
.

Choose a “good” input u(t) from onset (say based on x(0)).
y(t) is not relevant.

Open loop optimal control deals with choosing u(t) as to,

min J
(
{x(t), u(t), 0 ≤ t ≤ Tmax}

)
,

subject to constraints on x and u.

E.g. Make a “thrust plan” for a spaceship.



Closed loop (feedback) control

ẋ(t) = f
(
x(t), u(t), t

)
,

y(t) = h
(
x(t), u(t), t

)
.

Choose (design) a controller (control law), g(·):

u(t) = g
(
y(t), t

)
.

The design may be “optimal” w.r.t. some performance measure, or
may be “sensible”.



Combination of open loop and closed loop

Consider a jet flight from Brisbane to Los Angeles (approx 13 : 45).

ẋ(t) = f
(
x(t), u(t), t

)
.

Dynamical system modeling: What are possibilities for x? For u?
Why is the problem time dependent?

Open loop methods can be used to set the best u(·). Call this a
reference control. This also yields a reference state. We now have,
xr (t) and ur (t) and we know that, if the reference is achieved then
the output is,

yr (t) = h
(
xr (t), ur (t), t

)
.

We can now try to find a controller g(·),

u(t) = g
(
y(t), t, xr , ur

)
,

such that ||x(t)− xr (t)|| “behaves well”.



Combination of open loop and closed loop, cont.

The trajectory tracking problem of having ||x(t)− xr (t)|| “behave
well” is essentially called the regularization problem. “Behaving
well” stands for:

I Ideally 0

I Very important: limt→∞ ||x(t)− xr (t)|| = 0 (stability)

I Also important: How ||x(t)− xr (t)|| is regulated to 0. E.g.
fast/slow. E.g. with many osculations or not

Many (perhaps most) controllers are “regulators” and are not even
associated with a trajectory, instead they try to regulate the
system at a set point. E.g. cruise control in cars.



The Basic Feedback Loop

I plant

I controller

I actuators

I sensors.



(Historic) Applications of Control Theory

I Watt’s fly-ball governor

I The feedback amplifier

I Aviation

I Space programs 50’s, 60’s

I Everywhere today: Head position control of hard disk drives
(typically PID controllers)



Key Developers of (Highly Used) Ideas and Methods

Up to 60’s:

I E. J. Routh

I A. M. Lyapunov

I H. Nyquist

I W. R. Evans

I R. Bellman

I L. S. Pontryagin

I R. E. Kalman

I The developers of Model Predictive Control (MPC)



Implementations

I Mechanical

I Analog

I Digital



A survey of the mathematical problems handled in this course



Unit 2: Signals, Systems and Math Background

I Essentials of “Signals and Systems” (no state-space yet)

I Convolutions, integral transforms (Laplace, Fourier, Z...) and
generalized functions (δ)

I The unit ends with negative feedback:

Consider a system with plant transfer function, H(s), and negative
feedback controller, G (s). The transfer function of the whole
system is:

Q(s) =
H(s)

1 + G (s)H(s)
.



Unit 3: Elements of Classic Engineering Control

The main object is,

Q(s) =
H(s)

1 + G (s)H(s)
.

I The “objectives” in controller (regulator) design

I PID Controllers (Proportional, Integral, Derivative)

I The Nyquist Stability Criterion



Unit 4: Linear State-Space Systems and Control

The main object of study is,

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).

Together with the discrete time analog.

I When can such system be well controlled (e.g. stabilized)?

I Linear state feedback controllers are of the form u(t) = Ky(t)
for some matrix K

I Is there a way to estimate x based on y? The Luenberger
observer

I The Kalman decomposition

This unit is allocated plenty of time (approx. 9 lecture hours).



Unit 5: Lyapunov Stability Theory

Here we “leave” control for a minute and look at the autonomous
system:

ẋ(t) = f
(
x(t)

)
.

Note that this system may be the system after a regulating control
law is applied.

An equilibrium point is a point x0, such that f (x0) = 0.

Lyapunov’s stability results provide methods for verifying if
equilibrium points are stable (in one of several senses).

One way is to linearize f (·) and see if the point is locally stable.

Another (stronger) way is to find a so called Lyapunov function
a.k.a. summarizing function or energy function.



Unit 6: LQR and MPC

I Getting into optimal control for the first time in the course.

I The Linear Quadratic Regulator (LQR) problem deals with
fully observed linear dynamics: ẋ(t) = Ax(t) + Bu(t), and
can be posed as follows:

min
u(·)

x(T )′Qf x(T ) +

∫ T

0
x(t)′Qx(t) + u(t)′Ru(t)′dt

I It is beautiful that the solution is of the form u(t) = Kx(t)
(linear state feedback) where the matrix K can be found by
what is called a Ricatti equation

I The unit only summarizes results that are to be proved down
the road after both dynamic programming and calculus of
variations are studied.

I The second part of the unit introduces Model Predictive
Controller variations of LQR in which u is constrained to be in
a set depending on x . In this case quadratic programs arise.



Unit 7: Dynamic Programming
Bellman’s principle of optimality can be briefly described as follows:

If x-y-w-z is the “optimal” path from x to z then y-w-z is the
optimal path from y to z.

The unit generally deals with systems of the form
ẋ(t) = f

(
x(t), u(t)

)
and a cost function:

J
(
x(t0), t0

)
= min

u

∫ T

t0

C
(
x(s), u(s)

)
ds + D

(
x(T )

)
.

Bellman’s optimality principle implies that the optimal cost
satisfies:

J∗
(
x(t), t

)
= min

u
C
(
x(t +dt), u(t +dt)

)
dt +J∗

(
x(t +dt), t +dt

)
.

This leads to the Hamilton-Jacobi-Bellman PDE which will be
studied in the unit.



Unit 8: Calculus of Variations and Pontryagin’s Minimum
Principle

Calculus of variations is a classic subject dealing with finding
optimal functions. E.g., find a function, u(·) such that, u(a) = au,
u(b) = bu and the following integral is kept minimal:

∫ b

a

√
1 + u′(t)2

u′(t)
dt.

Question: What is the best u(·) if we remove the denominator?

Pontryagin’s Minimum Principle is a result allowing to find u(·) in
the presence of constraints, generalising some results of the
calculus of variations, yet suited to optimal control.



Unit 9: Back to LQR

Now that the essentials of dynamic programming and Pontryagin’s
minimum principle are known - we present two proofs (using both
methods) for the celebrated LQR result (of Unit 6).



Unit 10: Systems with Stochastic Noise

The Kalman filter deals with the following type of model:

x(n + 1) = Ax(n) + Bu(n) + ξ1(n),

y(n) = Cx(n) + Du(n) + ξ2(n),

where ξi are noise processes, typically taken to be Gaussian.

The Kalman filter is a way to optimally reconstruct x based on y .
It is a key ingredient in many tracking, navigation and signal
processing applications.

Related is the Linear Quadratic Gaussian Regulator (LQG) which
generalises the LQR by incorporating noise processes as in the
Kalman filter.

This is the only “stochastic” unit in the course.



Unit 11: Closure

The course is just the tip of the ice-berg. There is much-much
more to control theory practice and research. Some further
developments will be surveyed:

I Control of Non-linear (smooth) systems (e.g. in Robotics)

I Adaptive Control

I Robust Control

I Applications of linear matrix inequalities

I Supervisory control

I Control of inherently stochastic systems

I Control of stochastic queueing networks (***)



Last Slide

Suggestion: Wiki the terms appearing in this presentation to get a
feel for the scope of the course.


