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Unit Outline
Goal: Taste the mathematical activities of classical control
engineering

Unit Highlights:

I Some Plant Examples

I Control Design Goals

I Routh-Hurwitz stability criterion

I System type

I The PID Controller

I Profiling the Step Response

I Examples in MATLAB and Mathematica

I Frequency Response

I Nyquist Stability Criterion

I Pade Approximations

I Nonminimum phase systems (HW)



Some Plant Examples



Car Driving Straight (Newton’s law: F = ma)
I F - Force
I m - Mass
I a - Acceleration

Assume:

I Rotational inertia of the wheels is negligible.
I Friction retarding the motion of the car is proportional to the

car’s speed with constant β (in practice it may be
proportional to speed squared). If x(t) is location:

u(t)− βẋ(t) = mẍ(t)

Set y(t) = ẋ(t),

ẏ(t) +
β

m
y(t) =

1

m
u(t).

H(s) =
Y (s)

U(s)
=

m−1

s + βm−1
.



Rotating Satellite (Newton’s law: M = Iα)

I M - The sum of all external moments

I I - Mass moment of inertia

I α - Angular acceleration

Assume:

I Thrust working at force u(t)

u(t) = I ÿ(t)

H(s) =
Y (s)

U(s)
= I−1 1

s2
.



Pendulum (Newton’s law: M = Iα)
Assume:

I θ(t) is angle relative to hanging down position.

I Mass m, Length `, Gravity g

I Torque with direction of θ, u(t)

u(t)−mg` sin θ(t) = m`2θ̈(t)

This is non-linear, yet for θ = 0, sin θ ≈ θ So we get,

ÿ(t) +
g

`
y(t) =

1

m`2
u(t)

set ωn =
√
g/`,

H(s) =
Y (s)

U(s)
=

m−1`−2

s2 + ω2
n

.



DC Motor

From a torque ODE, an electrical ODE and some simplifying
assumptions, one can get the following ODE:

Jmθ̈(t) + (b +
KtKe

Ra
)θ̇(t) =

Kt

Ra
v(t)

Here, Jm, b, Kt , Ke and Ra are physical constants of the motor
and related electrical circuit. θ(t) is the motor angle. v(t) is
voltage applied to the motor. Thus for input: voltage and output:
angle, we get this transfer function:

H(s) =
K

s(τs + 1)
, K =

Kt

bRa + KtKe
, τ =

RaJm
bRa + KtKe

.

And for input: voltage and output: speed (θ̇), we get this:

H(s) =
K

τs + 1
.



Basic model and overview of control design goals



The Basic Model

Signals: R(s) is input/reference. W (s) and V (s) are disturbances.
Systems: H(s) is the plant, G1(s) and G2(s) are control
components (compensator / sensor ).

Y = H
(
W + G1

(
R − G2(Y + V )

))
we get,

Y = HcR +
Hc

G1
W − HcG2V , Hc :=

HG1

1 + HG1G2

E = R − Y =
1

1 + HG1G2
R − H

1 + HG1G2
W +

HG1G2

1 + HG1G2
V



Goals in Designing G1 and G2

I Stability:Hc(s) should be stable system

I Regulation (for R(s) = 0): E (s) small. Properties of the
disturbances W (s) and V (s) can be taken into consideration

I Tracking (for R(s) 6= 0): For “desired” references, R(s), the
error E (s) should be “small”

I Robustness: Model error of the plant, e.g. the plant
G ′(s) = G (s)

(
1 + δ(s)

)
should still be controlled well.

I Simplicity: Often a three parameter PID controller (or even
simpler) “does the job”

I Practicality: Staying within dynamic limits, not using too
many components, etc...



Stability



Types of Stability
Two basic types:

1. The ability of the system to produce a bounded output for
any bounded input (BIBO).

2. The ability of the system to return to equilibrium after an
arbitrary displacement away from equilibrium (internal
stability)

For non-linear and/or time-varying systems these categories are
generally distinct. For LTI (SISO and MIMO) systems, both
categories are essentially equivalent.

In Unit 2, we dealt with BIBO stability and in Units 4 and 5 we
deal with internal stability.

For now: A system with a given transfer function is stable if the
pole locations are with negative real part.



Interlude: Routh-Hurwitz stability criterion

Given, Hc(s) or H(s) = N(s)
D(s) the standard way to check for

stability is to solve,
D(s) = 0,

and see all solutions have are in the LHP.

Routh-Hurwitz is an alternative (today still good for analytic
purposes).

See for example Sec 7.3 of [PolWil98].

Later on in this Unit we will look at Nyquist’s Stability Criterion as
another approach.



A simple necessary condition for stability (dk > 0 for all k)

If a polynomial,D(s) = sn + dn−1s
n−1 + . . .+ d1s + d0 has dk ≤ 0

then it can not be stable. I.e. then there exists p :,D(p) = 0 with
Re(p) ≥ 0.

Proof.

Denote the real roots of the polynomial by pk = λk and the strictly
complex roots by pk = λk ± iωk . Now represent the polynomial as:

D(s) =
( ∏

k:real

(s − λk)
)( ∏

k:complex

(s − λk)2 + ω2
k

)



Controlling for Stability
In case H(s) is not stable. A first goal in designing G1(s) and
G2(s) is to achieve stability of

Hc(s) :=
H(s)G1(s)

1 + H(s)G1(s)G2(s)
.

It is further important from the view point of disturbances and
robustness to have good stability margins. Common are:

I gain margin - The amount that the loop gain can be changed
at the frequency at which the phase shift is 180◦ without
reducing the return difference to zero.

I phase margin - The amount of phase lag that can be added to
the open-loop transfer function, at the frequency at which its
magnitude is unity, without making the return difference zero.

These concepts will become clear as we look at Nyquist and Bode
plots.



The Pit-Fall of Open Loop Cancellation

Given that H(s) has unwanted (e.g. unstable) poles, pi . One may
set G1(s) to have such zeros, hence cancelling the poles in the
combined G1(s)H(s). In a non-ideal world, this is a bad idea - it
simply won’t work.



System Type



System Type - Definition

The system is of “type m” if it can track a polynomial input of
degree m with finite but nonzero steady state error in the basic
proportional loop: G2(s) = 1, G1(s) = K1.



Interlude: The final value theorem.

Assume the Laplace transform of f (t) exists for s = 0 and that
limt→∞ f (t) <∞:

lim
s→0

∫ ∞
0

f ′(t)e−stdt =

∫ ∞
0

f ′(t)dt = lim
t→∞

f (t)− f (0),

But also, ∫ ∞
0

f ′(t)e−stdt = sf̂ (s)− f (0)

So,
lim
s→0

sf̂ (s) = lim
t→∞

f (t).



System Type
Recall, E (s) = 1

1+K1H(s)R(s).

Consider reference: r(t) = c0 + c1t + c2
2 t + . . .+ cm

m! t
m. So,

R(s) =
c0

s
+

c1

s2
+

c2

s3
+ . . .+

cm
sm+1

.

Denote plant by the form, H(s) = N(s)
spD(s) , where N(·) and D(·)

don’t have zeros at s = 0. Then,

lim
t→∞

e(t) = lim
s→0

sE (s) =
sp−mD(s)

spD(s) + K1N(s)

(
c0s

m+1+c1s
m+. . .+cm

)

=


0 if p > m,

e∞ <∞ if p = m,

∞ if p < m.

Hence the system type of H(s) = N(s)
spD(s) is p.



Truxal’s formula for e∞ in Type-1 systems

Suppose for type 1 system,

Hc(s) = K
(s − z1) · . . . · (s − zm)

(s − p1) · . . . . . . · (s − zn)

E (s) = R(s)− Y (s) = R(s)
(

1− Y (s)

R(s)

)
= R(s)

(
1− Hc(s)

)
.

With “ramp” input, we get E (s) = 1−Hc (s)
s2 .

e∞ = lim
s→0

1− Hc(s)

s
= − lim

s→0

dHc(s)

ds
= − lim

s→0

dHc(s)

ds

1

Hc(0)
,

since, Hc(0) = 1 because the system is type-1. Thus,

e∞ = − lim
s→0

dHc(s)

ds

1

Hc(s)
= − lim

s→0

d

ds
logHc(s) =

n∑
i=1

z−1
i −

m∑
i=1

p−1
i .



Software Interlude



Basic MATLAB commands for systems

I Define a system through sys = tf(num,den)

I Visualize in s-plane: pzmap, bode, margin, nyquist,

I Visualize in time: step, impulse

I Conversion: tf2ss, ss2zp, zp2tf etc...

I Misc: roots, pade



Mathematica

It is new in Mathematica.

Look for: guide/ControlSystems .



The PID (Proportional – Integral – Derivative) Controller



Parameterized by kP , kI and kD

Controller Transfer Function:

G1(s) = kP + kI
1

s
+ kDs

Response of controller to error:

u(t) = kPe(t) + kI

∫ t

0
e(τ)dτ + kD

d

dt
e(t)

Closed Loop System Transfer Function:

Hc(s) =
H(s)(kP + kI

1
s + kDs)

1 + H(s)(kP + kI
1
s + kDs)



Example: P-Controller for second order system

H(s) =
ω2
n

s2 + 2ζωns + ω2
n

.

The closed loop (controlled) system:

Hc(s) =
kPω

2
n

s2 + 2ζωns + ω2
n + kPω2

n

Since the original system is type-0, the resulting system will have a
constant error term. If kP is made large there will be small steady
state error, but the damping may be much too low.

Numeric illustration on MATLAB/Mathematica.



Incorporating an integrator term.

Now second order systems may now reject constant disturbances
since it “upgrades” the system type to 1.



Incorporating a derivative term.

Gives sharp response to suddenly changing signals.

Second order systems may essentially be shaped in any way.



Transient Time Domain Behavior



Profiling the Step Response
Specification for type-1 regulators with respect to “change of
reference point”:

r(t) = 1(t).

If (controlled system) is BIBO then, limt→∞ y(t) = 1. But how
does it get there?

I Rise time - The time it takes the system to reach the
“vicinity” of the new point: tr = inf{t : y(t) = 0.9}.

I settling time - The time it takes the transients to “decay”:
ts = inf{t : |y(τ)− 1| ≤ 0.01, ∀τ > t}.

I overshoot - The maximum amount the system overshoots its
final value divided by its final value. If it exists:
Mp = max{y(t)}.

I peak time - The time it takes to reach the maximum
overshoot, tp = inf{t : y(t) = Mp}.

There is often a tradeoff between low Mp and low tr .



Analysis by means of Frequency Response



Bode Plots

See handout.



Resonance

The phenomenon of resonance.



The Nyquist Stability Criterion



Nyquist’s Criterion: The Setup
We are interested in analyzed the closed loop transfer function:

Hc :=
HG1

1 + HG1G2
=

NH
DH

N1
D1

1 + NH
DH

N1
D1

N2
D2

=
NHN1D2

DHD1D2 + NHN1N2

For stability we need that the roots of DHD1D2 + NHN1N2 are in
the LHP as they are the poles of the closed loop system.

Yet, Nyquist is best explained (and also holds for non-rational
systems) if we take: G1 = K and G2 = 1. In this case we need to
make sure the zeros of 1 + KH(s) are in the LHP as they are the
poles of the closed loop system.

Nyquist assumes that we can (by other means) determine the
number of unstable (RHP) poles of H(s), hence it should not be
hard to also find the zeros of 1 + KH(s) and thus determine
stability. Yet, the (historic) strength of the method is in being able
to visualize how changes in the gain K will affect stability.



Nyquist’s Criterion: The Setup - cont.
So we have a plant H(s), we know the location (LHP or RHP) of
the poles of H(s) and we want to see:

I If the zeros of 1 + KH(s) are in the LHP and thus Hc(s) is
stable.

I How stability will be affected by changes in K .

Nyquist’s idea is to graphically use the principle of the argument:

Let R(s) be a complex function and C a closed contour such that
there are no poles of R(·) on C. As the complex number s
traverses C once in the clockwise direction:

number of clockwise encirclements of R(s) of the origin = N − P,

where N and P are respectively the the number of zeros and
number of poles of R(·) inside C.



Interlude: The principle of the argument

Let f (s) be an analytic function inside and on a closed contour C
except for a finite number of poles inside C Then for C described in
the clockwise direction,

E =
1

2πi

∮
f ′(s)

f (s)
ds = N − P,

where E is the number of encirclements of f (s) of the origin, and
N and P are respectively the number of zeros and number of poles
inside C.

For rational functions - it is easy to see intuitively why
E = N − P... Start by envisioning a contour with one zero inside it
and one outside, and look at the net change in phase of f (s) as it
traverses the contour. Then add more zeros and poles to the story.



Interlude: The principle of the argument - cont.

Below is a proof of the first equality E = 1
2πi

∮ f ′(s)
f (s) ds. The other

equality, 1
2πi

∮ f ′(s)
f (s) ds = N − P, can be obtained by using Cauchy’s

residue theorem:

1

2πi

∮
g(s)ds =

n∑
i=1

Res[g(s); si ].

Let s(t) be a function from [a, b] to the contour C which
parameterizes that curve:

1

2πi

∮
C

f ′(s)

f (s)
ds =

1

2πi

∫ b

a

f ′(s(t))

f (s(t))
s ′(t)dt =

1

2πi

∫ b

a

(
ln(f (s(t)))

)′
dt

=
1

2πi

∫ b

a

(
lnRf (s(t))+ln e iΦ(f (s(t)))

)′
dt =

Φ(f (s(b)))− Φ(f (s(a)))

2π
= E



Applying Nyquist
This is how you can apply the Nyquist criterion:

1. Plot KH(s) for s = iω, ω ∈ [0, ωmax).

2. Then revert the plot about the real axis.

3. Evaluate the number of clockwise encirclements of −1 and
call that number N. Do this by drawing a straight line in any
direction from −1 to ∞ and then counting the net number of
left-to-right crossings of the straight line by KH(s). For
crossings in the counter-clockwise directions - count as −1.

4. Determine the number of unstable (RHP) poles of H(s) and
call that number P.

5. Calculate the number of unstable closed-loop roots, Z :

Z = N + P

For stability we want Z = 0.



Nyquist Example

Example of H(s) = 1
s(s+1)2 .



Gain and Phase Margins - Revisited

I gain margin - The amount that the loop gain can be changed
at the frequency at which the phase shift is 180◦ without
reducing the return difference to zero.

I phase margin - The amount of phase lag that can be added to
the open-loop transfer function, at the frequency at which its
maginitude is unity, without making the return difference zero.



Pade Approximations



Pade Approximations

Given a function, H(s) a Pade approximant of order m, n is a
rational function,

H̃(s) =

∑m
i=0 bi s

i

1 +
∑n

i=1 ai s
i

such that,

H(0) = H̃(0), H ′(0) = H̃ ′(0), , . . . ,H(m+n)(0) = H̃(m+n)(0).

This is basically obtained by equating the first m + n Taylor series
around (s = 0) coefficients of H(s) with those of H̃(s) and solving
for the sequences ai and bi .



Approximation of Pure Delay

In control the archetypal candidate for a Pade approximation is
H(s) = e−sT - the pure delay.

For example: A Pade approximation of order (1, 1) compares the
taylor expansion

e−sT = 1− sT + (sT )2/2− (sT )3/3! + (sT )4/4!− . . .

with,

b0s + b1

a0s + 1
= b1+(b0−a0b1)s−a0(b0−a0b1)s2+a2

0(b0−a0b1)s3+. . .

And solves for the coefficients to get, e−sT ≈ 1−Ts/2
1+Ts/2 .



Nonminimum phase systems



Nonminimum phase systems

A system with zeros in the RHP is called nonminimum phase.

As an illustration consider the two systems,

H1(s) = 10
s + 1

s + 10
, H2(s) = 10

s − 1

s + 10
.

Both systems have the same magnitude of frequency response:

|H1(iω)| = |H2(iω)|

yet as can bee seen through a Bode plot, the phases of the transfer
function are drastically different.

These “exotic” systems are the subject of HW 2.


