
MATH4406 (Control Theory)
Unit 6: The Linear Quadratic Regulator (LQR)

and
Model Predictive Control (MPC)

Prepared by Yoni Nazarathy, Artem Pulemotov,
September 12, 2012



Unit Outline

Goal 1: Outline linear quadratic optimal control (LQR).

Goal 2: Introduce Concepts of Model Predictive Control (MPC).

Goal 3: A stability proof for linear quadratic MPC.

Auxiliary items:
Background on positive (semi) definite matrices.
Riccati equations.
Quadratic Programming (convex optimization).



The Linear Quadratic Regulator (LQR)



The “L” part of LQR

The same old linear dynamics:

ẋ(t) = Ax(t) + Bu(t), or x(k + 1) = Ax(k) + Bu(k),

A ∈ Rn×n, B ∈ Rn×m, x(0) = x0.

Assume,

rank
(
con(A,B) :=

[
B,AB,A2B, . . . ,An−1B

])
= n,

i.e., the system is controllable (reachable)

So in the continuous time case, we can drive the state from x0 to
any state in any finite time, T . For the discrete time case it can be
done in at most n steps.



The “Q” part of LQR

A cost structure:

J(u) =

∫ T

0

(
x(t)′Q x(t) + u(t)′ R u(t)

)
dt + x(T )′Qf x(T ),

or,

J(u) =
N−1∑
k=0

(
x(k)′Q x(k) + u(k)′ R u(k)

)
+ x(N)′Qf x(N).

The time horizon, T or N, can be finite or infinite.

The cost matrices satisfy,

Q = Q ′ ≥ 0, Qf = Q ′f > 0, R = R ′ > 0.



The “R” part of LQR

Since cost structure is,

J(u) =

∫ T

0

(
x(t)′Q x(t) + u(t)′ R u(t)

)
dt + x(T )′Qf x(T ),

or similar for discrete time, we see that we are trying to find a
control u(t), t ∈ [0,T ] that will “regulate” the system “at 0”. The
payment is “quadratic” for both “state” and “control effort”.

Typical choices for Q (or Qf ) are,

Q = 11′ or Q = I or Q = diag(qi ),

where qi ≥ 0.

A typical choice for R is R = diag(ri ), with ri > 0.

The time horizon, T or N is often taken as ∞.



The LQR Success Story
It turns out that the optimal control is a linear state feedback
control law. In the continuous time case,

u(t) =
(
− R−1B ′P(t)

)
x(t),

where the n × n matrix P(t) is the solution of a Riccati differential
equation (to be presented soon).

In the discrete time case,

u(k) =
(
−
(
R + B ′P(k + 1)B

)−1
B ′P(k + 1)A

)
x(k),

where the n × n matrix P(k) is the solution of a Riccati difference
equation (to be presented soon).

Further if T =∞ (or N =∞) the terms P(t) (or P(k)) are
replaced by a constant matrix that is a solution of associated
Riccati algebraic equations (different versions for discrete and
continuous time).



Regulation of Trajectory Tracking

LQR is often used for tracking some desired trajectory, x̃(·). In the
simplest case this trajectory is a non-zero desired constant set
point, x̃ .

Finding desired trajectories can be presented as a separate problem:
E.g. open-loop optimal control based on calculus of variations.

In this case the objective may be formulated as:

Jx̃(u) =

∫ ∞
0

((
x(t)− x̃(t)

)′
Q
(
x(t)− x̃(t)

)
+ u(t)′ R u(t)

)
dt,

with similar versions for discrete time and/or finite time horizons.



LQR Results



The Riccati Equation - Continuous Time

This is the Riccati matrix differential equation used to find the
state feedback control law of continuous time LQR. Solve it for
{P(t), t ∈ [0,T ]}

−Ṗ(t) = A′P(t) + P(t)A− P(t)BR−1B ′P(t) + Q, P(T ) = Qf .

Observe that it is specified “backward in time”.

If T =∞ the steady state solution P of the Riccati differential
equation replaces P(t) in the optimal control law. This P is the
unique positive definite solution of the algebraic Riccati equation,

0 = A′P + PA− PBR−1B ′P + Q.

The optimal control is:

u(t) =
(
− R−1B ′P(t)

)
x(t) or u(t) =

(
− R−1B ′P

)
x(t).



The Riccati Equation - Discrete Time
This is the Riccati matrix- difference equation. Solve it for
{P(k), k ∈ {0, . . . ,N}}

P(k) = Q + A′P(k + 1)A

− A′P(k + 1)B
(
R + B ′P(k + 1)B

)−1
B ′P(k + 1)A,

P(N) = Qf .

If N =∞ the steady state solution P replaces P(k). This P is the
unique positive define solution found by the algebraic Riccati
equation,

P = Q + A′PA− A′PB(R + B ′PB)−1B ′PA.

The optimal control is:

u(k) =
(
−
(
R+B′P(k+1)B

)−1
B′P(k+1)A

)
x(k), or u(k) =

(
−
(
R+B′PB

)−1
B′PA

)
x(k).



Stability

When T =∞ (or N =∞) we see that the resulting system is
simply a state-feedback controller,

u(t) = Fx(t) or u(k) = Fx(k).

with F =
(
− R−1B ′P

)
or F =

(
−
(
R + B ′PB

)−1
B ′PA

)
.

Is it stable? In the continuous time case, the algebraic Riccati
equation is,

0 = A′P + PA− PBR−1B ′P + Q.

Recall the formula −(A′P + PA) > 0 from Yoni’s lecture on
Lyapunov functions. The presence of this term suggests that we
can hope to have stability. Indeed, we do under assumptions.

For the discrete time system, the analog of A′P + PA is P − A′PA.



A Solved Example
Consider the continuous time (A,B,C ,D) system as studied
previously with,

A =

[
0 1

0 0

]
, B =

[
0

1

]
, C = [1 0] , D = 0.

We wish to find u(·) that minimizes,

J =

∫ ∞
0

(
y2(t) + ρu2(t)

)
dt.

Then this can be formulated as an LQR problem with,

Q = C ′C , R = ρ.

The algebraic Riccati equation turns out to be a system of

equations for the elements of P =

[
p1 p2

p2 p3

]
,

−1

ρ
p22 + 1 = 0, p1 −

1

ρ
p2p3 = 0, 2p2 −

1

ρ
p23 = 0.



A Solved Example - cont.

P =

[
p1 p2

p2 p3

]

−1

ρ
p22 + 1 = 0, p1 −

1

ρ
p2p3 = 0, 2p2 −

1

ρ
p23 = 0.

We will have P > 0 if and only if p1 > 0 and p1p3 − p22 > 0.... We
get,

P =

[ √
2
√
ρ

√
ρ

√
ρ

√
2ρ
√
ρ.

]
And the optimal feedback control law is,

u(t) = −1

ρ
[
√
ρ
√

2ρ
√
ρ]x(t).



LQR in MATLAB

Very simple:
[K ,S , e] = lqr(SYS ,Q,R,N)

N is an additional type of cost term,

2x(t)′Nu(t).

The return values:
−K is the state feedback gain matrix.
S is the solution of the algebraic Riccati equation
e are the resulting closed loop eigenvalues (i.e. the eigenvalues

of A− BK ).

In practice this is often the preferred way of deriving an initial
controller before making finer refinements (based on simulations
and tests).



Model Predictive Control



MPC Overview
Model Predictive Control (MPC), also called “receding horizon
control”, works as follows:
For a plant modeled as, x(k + 1) = f

(
x(k), u(k)

)
an input,

u·|k =
(
u(k|k), u(k + 1|k), . . . , u(k + N − 1|k)

)
is determined at each time slot k based on x(k). The input is
selected as to minimize predicted costs over the “planning horizon”
k , k + 1, . . . , k + N. Here N is the length of the planning horizon.
Once u|k is determined, the control u(k |k) is applied and at time
k + 1 the process is repeated.

For the calculation made during time k , denote the “predicted
state” (due to u·|k) by x(k + 1|k), x(k + 2|k), . . . , x(k + N|k).
Observe that in general if N <∞, u(k + 1|k) 6= u(k + 1|k + 1)
even though (without disturbances/noise),

x(k + 1) = f
(
x(k), u(k |k)

)
= x(k + 1|k).



MPC Notes

Model Predictive Control (MPC) is a sub-optimal control method
that “makes sense”. If you think about it, this is in a sense how we
(individuals) sometimes make decisions.

It originated from the chemical process control industry in the 80’s.
There each time step is in the order of a few hours. With the
advent of cheap fast computers - it is now often the method of
choice for real-time controllers also (e.g. time step every 10
milliseconds). The challenge is to solve the optimization problem
for u·|k quickly.

It is not always the case that increasing the time horizon “N” is
better.

The stability of systems controlled by MPC is in generality not
trivial. We will show a stability proof for certain cases.



Linear Quadratic MPC

Model:
x(k + 1) = Ax(k) + Bu(k).

Cost:

J(u) =
N−1∑
k=0

x(k)′Q x(k) + u′(k)R u(k) + x ′(N)Qf x(N).

so far... exactly LQR. But... add constraints:

F

[
x(k)

u(k)

]
≤ b.

In practice there are often hard constraints on the state and the
control. Hence linear quadratic MPC is in practice very useful.



A Simple Illustrative MPC Example

Consider, x(k + 1) = x(k) + u(k) with state and control
constraints,

|x(k)| ≤ 3

2
, |u(k)| ≤ 1.

Let Q = R = 1 and consider a planning horizon of N = 2.

At state x(0) the MPC chooses (u(0), u(1)) as to minimize,

x(0)2 + u(0)2 + (x(0) + u(0))2 + u(1)2.

subject to the constraints,

|u(0)|, |u(1)| ≤ 1, |x(0) + u(0)| ≤ 3

2
.

Find the controller u(0) = g
(
x(0)

)
. Is it stable?



Formulation as a Quadratic Program (QP)

At time k (taken to be 0 for simplicity), given a measured (or
estimated) state x(k) we need to solve,

minu(0),u(1),...,u(N−1)

N−1∑
k=0

x(k)′Q x(k)+u′(k)R u(k)+x ′(N)Qf x(N)

s.t. x(k + 1) = Ax(k) + Bu(k) and,

F

[
x(k)

u(k)

]
≤ b.

How can we pose this as an optimization problem (over finite
vectors) just in the mN variables u(0), . . . , u(N − 1)?



Formulation as a Quadratic Program (QP)
Use

x(1)

x(2)
...

x(N)

 =


A

A2

...

AN

 x(0)+


B 0 · · · 0

AB B
...

...
. . .

AN−1B · · · B




u(0)

u(1)
...

u(N − 1)


This converts the optimization problem of the MPC controller to
one that simply depends on the mN dimensional vector
u(0), . . . , u(N − 1).

The general form of a quadratic program (QP) is:

minzz
′Q̃z + P̃z ,

s.t. F̃ z ≤ b̃.

With a bit of (tedious rearranging) the MPC controller can then be
presented as a convex QP in mN decision variables. QPs where
Q̃ > 0 have a unique solution and are quite efficiently solvable!!!



The Closed Loop System is Non-Linear

MPC generates a “feedback” control law u(k) = g
(
x(k)

)
, where

the function g(·) is implicitly defined by the unique solution of the
QP. The resulting controlled system,

x(k + 1) = Ax(k) + Bg
(
x(k)

)
,

is in general non-linear (it is linear if there are no-constraints
because then the problem is simply LQR).

Nevertheless, as will be seen in the HW (looking at parts of
Bemporad, Morari, Dua and Pistikopoulus, 2002, “The explicit
linear quadratic regulator for constrained systems”), the resulting
system is piece-wise linear.



Stability of MPC



Stability of MPC

A system controlled by MPC is generally not guaranteed to be
stable.

It is thus important to see how to “modify” the optimization
problem in the controller so that the resulting system is stable.

We now show one such method based on adding an “end-point
constraint” that forces the optimized u·|k to drive the predicted
system to state 0.

Our proof is for linear-quadratic MPC, yet this type of result exists
for general MPC applied to non-linear systems.

Generalizations of the “end-point constraint method” also exist.



The Constrained Controllability Assumption

Based on the constraints F

[
x(k)

u(k)

]
≤ b, denote by X ⊂ Rn the

state-space and by U(x) the allowable controls for every x ∈ X.

For our stability result, we assume:

1. Q > 0

2. 0 ∈ U(0)

3. Constrained Controllability Assumption: Assume ∃N0 such
that for every initial condition x(0) ∈ X satisfying the
constraint set, ∃u(0), u(1), . . . , u(N0 − 1) that when applied
as input, results in x(N0) = 0.

In practice, verifying the constrained controllability assumption is
not much harder than verifying that the system is controllable. For
controllable unconstrained linear systems, N0 ≤ n.



The Modified Linear-Quadratic MPC

Add now an additional end-point constraint to the constraints of
the optimization problem in the MPC controller:

x(N0) = 0.

The problem can again be solved by a quadratic program, yet at
any time k (for any measured state x(k)) will result in u·|k that
has a predicted state of x(k + N0) = 0.

Observe that this does not imply that the system will actually be
at state 0 after N0 steps. Why?



Simple Example Revisited
Consider again, x(k + 1) = x(k) + u(k) with constraints,
|x(k)| ≤ 3

2 and |u(k)| ≤ 1, and with Q = R = 1 and a planning
horizon of N = 2. Add now an end point constraint at N = 2.

At state x(0) the MPC chooses (u(0), u(1)) as to minimize,

x(0)2 + u(0)2 + (x(0) + u(0))2 + u(1)2.

subject to the constraints,|u(0)|, |u(1)| ≤ 1, |x(0) + u(0)| ≤ 3/2,
as well as the new end point constraint:

|x(0) + u(0) + u(1)| = 0

The minimization now requires u(1) = −(x(0) + u(0)) and this
implies that u(0) = −2

3x(0). The controlled system is now:

x(k + 1) =
1

3
x(k).

Observe that it is asymp’ stable but does not reach 0 in finite time.



A Stability Proof

To show that linear-quadratic MPC systems satisfying the
constrained controllability assumptions are stable, we use a
Lyapounov function constructed from the cost objective in the
optimization problem. Denote,

VN

(
x
)

= min
u

s.t. x(0) = x

N−1∑
k=0

`
(
x(k), u(k)

)
= min

u
JN

(
x , u
)
,

where `(·, ·) is the cost per stage (quadratic in our case) and
JN(x , u) is the cost function starting in state x with control u over
the time horizon.



A Stability Proof - cont.

Then a feasible trajectory (one satisfying the constraints) for
horizon N − 1 based on feasible controls u(0), . . . , u(N − 2), can be
“prolonged” with no cost by setting u(N − 1) = 0. This is because
with the new end point constraint, a feasible trajectory for horizon
N − 1 has x(N − 1) = 0 and `

(
x(N − 1), u(N − 1)

)
= `(0, 0) = 0.

Thus all feasible u’s for the N − 1 horizon problem are feasible for
the problem with horizon N and further,

JN−1

(
x(0), u

)
= JN

(
x(0), [u, 0]

)
.

Hence,
VN(x) ≤ VN−1(x).



A Stability Proof - cont. 2
Let now u∗0 be the control applied with a time horizon of N. The
optimal cost to go based on Bellman’s Dynamic Programming
Principle (focus of the next unit) is,

VN(x) = `(x , u∗0) + VN−1(Ax + Bu∗0).

But due to the endpoint constraint (as shown on previous slide),

VN(Ax + Bu∗) ≤ VN−1(Ax + Bu∗),

hence,
VN(x) ≥ `(x , u∗0) + VN(Ax + Bu∗0).

or,
VN(Ax + Bu∗0)− VN(x) ≤ −`(x , u∗0) < 0.

Where the last inequality holds for all x 6= 0 due to the cost
structure.

Further it can be shown that VN(x) is continuous in x and hence it
is a (discrete time system) Lyapounov function as required.


