MATH4406 (Control Theory), HW5 (Unit 5)

Infinite Horizon Discounted MDP — Part 2.
Prepared by Yoni Nazarathy, Last Updated: September 21, 2014.

This homework project is the second homework about infinite horizon discounted
MDP. The previous homework was computational. This one is of a more theoretical
nature. Quiz 3, will be based on this homework assignment.

Part 1: The Machine Replacement Model.

Suppose that at each epoch, a production machine is inspected and its condition and
state is noted. States are {0,1,2,...} with state 0 being “perfectly new”. With each
state i, an operating cost of C'(4) is incurred at each epoch where C(-) is assumed to be
an increasing function in . After inspecting the state, at each epoch a decision is made:
a = 0 (not replace the machine) or a = 1 (replace the machine). If the decision is to
replace, a cost R > 0 is immediately incurred. This then moves the state of the machine
to 0 for the next epoch. If the decision is not to replace then the condition of the machine
evolves randomly according to the probabilities P; ;. I.e. this is the probability of the
machine changing from state ¢ to state j, if not replaced.

We assume the following about P ;: For each k, Z]oik P, ; is an increasing function
of i. This means that if T; is a random variable representing the next state visited after
i (assuming no replacement) then,

P(Tiy1 > k) > P(T; > k).
This is known as a stochastic order and is equivalent to having
E [f(Tin)] = E [f(T3)],

for all increasing functions f.
Some of the items below are easy. Some are harder. The key items are 5 and 6 where
you will prove structural properties of the problem.

1: Describe (briefly) a real life situation where this machine replacement model may be
applicable. In that situation, explicitly state some example R, C(-) and P, ;.

2: Argue (briefly) why the stochastic ordering assumption above is sensible.

3: Pose the problem as an MDP with infinite horizon and discounted objective with
discount factor A € (0,1). Write the state-space, action-set, transition probabilities,
rewards etc.



4: Use the “standard” form of the optimality equation (e.g. Eq (6.2.2) on page 146 of
[Put94]) to show that the optimality equation for this MDP can be written as,

v(i) = C(i) + min{R + \v(0), A Z Pijv(4)}.

Here v(+) is the value-function but with respect to the minimisation criterion.

5: Use the value-iteration, v°(i) = C'(i) and for n > 1,
v"(i) = C(i) + min{R + Av""'(0),a Y~ P 0" (5)},
=0

to prove that v(i) is an increasing function.

6: Use the above to prove that there exists an 7 < oo such that an optimal policy is to
replace when ¢ > 7 and not replace if ¢ < 1.

7: Provide an example where i = oo.

8: Devise an algorithm for finding 7. Specify the algorithm precisely. You do not need
to implement it.

Part 2: More on using Contraction Mappings and Rates of Convergence.

Look at Theorem 6.3.3, on page 163 of [Put94].

9: The theorem describes the rates of convergence of value-iteration, but you first need
to understand what the statement means. Write out the theorem statement and briefly
indicate both the exact mathematical meaning of (a)-(e) (defining “linear rate” etc...)
and then describe the applicative meaning in each of those cases. For this read the
“Rates of Convergence” sub-section 6.3.1 starting on page 159.

10: Write out the proof of the theorem, filling in any steps that are missing in the book.
Look at Theorem 6.4.8. on page 181 of [Put94].

11: This theorem states conditions for policy iteration to converge quadratically (better
than value-iteration which is linear). Study these conditions and describe in which situ-
ations you believe policy-iteration is a better algorithmic choice and in which situations
it is not. Use Corollary 6.4.9 if needed.

12 (optional): Write out the proof of the Theorem. In the process, fill out any missing
details - including results used on the way.



