
MATH4406 (Control Theory), HW7 (Unit 7)
POMDP.

Prepared by Julia Kuhn, Last Updated: October 21, 2014.

This homework project is about partially observable MDP. The exercises will be dis-
cussed in the tutorial.

Part 1: Machine-Repair Example.

Consider a machine with two internal components both of which are necessary to
finish the product. Assuming that the components are identical, we can describe the
state of the machine by a three-state Markov chain, where we denote the state with
zero, one or two broken components by 0, 1, 2. We further assume that components
break with probability 0.1 independent of each other, and they remain broken unless
they are replaced. If a component is broken, then there is a 50% chance that this
component damages the product (which will thus be defective). Broken components
may or may not damage the product independently of each other. The machine state
transition takes place after the manufacturing process.

We assume that we have four actions: manufacture, examine, inspect and replace.
If we choose to manufacture, we let the machine produce a new item without checking
whether the resulting item is defective or not. If we choose to examine, we let the
machine produce a new item and examine the quality of that item, which costs 0.25
units (we only consider the two possible outcomes “defective” or “non-defective”). If we
choose action inspect, we interrupt the manufacturing process, inspect the two internal
components, and replace each component that has failed. Replacement costs are 1 unit
per item, and an additional cost of 0.5 arises for the inspection. The action replace
replaces both internal components without prior inspection, and thus incurs only the
replacement but not the inspection cost.

The revenue of for producing a non-defective product is 1 unit (if the product is
defective, there is no revenue).

Write out (in numbers) the transition probability matrix for the state of the machine
and the immediate rewards under each action (for every possible state or transition).
Specify the observation probabilities under each action.

Part 2: Treasure Island Example.

Suppose there are four islands next to each other, we call them 1, 2, 3, 4. We know
that there is a treasure waiting for us on island 2, and we try to get there by swimming
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to the island in the east or west. However, we are not quite sure which of these islands
we are currently on (but it isn’t the one with the treasure). In fact, we just woke up on
an island after a big storm and have really no clue where we are. Of course, once we
reached island 2, we will know, because we will have found the treasure. But getting
there is complicated by the fact that we are not even so very sure where east and west
actually is. Therefore, if we decide to swim to the island in the east (west) we only
succeed with probability 0.8; with probability 0.2 we end up swimming in the opposite
direction. If we swim west from island 1, we will see very soon that there is only ocean
in that direction, so we’ll turn around quickly and thus end up on island 1 again. The
same happens if we swim east from island 4.

Specify the initial belief state at time 0, and the belief state at decision times 1 and
2, given that the first two actions are “west” and we haven’t found the treasure.

Part 3: Backward Induction for POMDP.

Consider a system with N states, a finite set of actions and M possible observation
outcomes. When action a is applied in state i, the state evolves according to transition
probability p(j|i, a) and subsequently an observation θ is made with probability qj(θ | a),
θ = 1, . . . ,M . Let the cost for each stage t be given by ct(i, a, j) when action a is taken
and the process evolves from i to j. There is no terminal cost.

Define
p̄i(t) = P (Xt = i | z0, . . . , zt, a0, . . . , at−1) ,

where the random variable Xt denotes the state at time t, zt is the observation made at
time t, and at denotes the action chosen at time t. Let the column vector of probabilities
be denoted by p̄(t) = (p̄1(t), . . . , p̄N(t))′.

(1) Prove that

p̄j(t+ 1) =

∑N
i=1 p̄i(t)p (j | i, at) qj (zt+1 | at)∑N

s=1

∑N
i=1 p̄i(t)p (s | i, at) qs (zt+1 | at)

for j = 1, . . . , N (as claimed in the lecture). Detail all your steps. Show that you
can write these equations as

p̄(t+ 1) =
[q (zt+1 | at)] ∗

[
P ′at p̄(t)

]
q (zt+1 | at)′ P ′at p̄(t)

,

where

• Pat is a matrix with dimension N ×N and (i, j)-th entry p(j | i, at),
• q (zt+1 | at) =

(
q1(zt+1 | at), . . . , qN(zt+1 | at)

)′
is a column vector of length N ,
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• element-wise multiplication is denoted by ∗, that is, [q (zt+1, at)] ∗
[
P ′at p̄(t)

]
is a

vector with j-th entry qj(zt+1 | at)
[
P ′at p̄(t)

]
j
, where

[
P ′at p̄(t)

]
j

denotes the j-th

entry of
[
P ′at p̄(t)

]
.

(2) Define

ct(a) =


∑N

j=1 p(j | 1, a)ct(1, a, j)
...∑N

j=1 p(j |N, a)ct(N, a, j)

 ,

the vector of expected costs. We can use the backward induction algorithm for
the fully observable MDP with states p̄(t) to find a policy that minimizes the total
expected costs over T stages. Show that the recursive equations can be written as

uT−1
(
p̄(T − 1)

)
= min

a
p̄(T − 1)′cT−1(a)

ut
(
p̄(t)

)
= min

a

{
p̄(t)′ ct(a) +

M∑
θ=1

q(θ | a)′ P ′a p̄(t)ut+1

(
[q(θ | a)] ∗ [P ′a p̄(t)]

q(θ | a)′ P ′a p̄(t)

)}
.

(3) Show that for all α > 0 we have

ut
(
αp̄(t)

)
= αut

(
p̄(t)

)
.

Use this to write the backwards induction algorithm in the simpler form

ut
(
p̄(t)

)
= min

a

{
p̄(t)′ct(a) +

M∑
θ=1

ut+1 ([q(θ | a)] ∗ [P ′a p̄(t)])

}
.
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