
MATH(4/7)406 (Control Theory)
Quiz 2 Solution (Unit 3) - September 9, 2014.

Prepared by Yoni Nazarathy

Quiz duration: 40 minutes.

Name:

Student ID:

Consider 3 distinct numbers, x1, x2, x3. These numbers are shuffled randomly and
the resulting sequence is presented to you one after the other. E.g you may first get to
see x3 then x1 and then x2. Any of the 6 permutations is equally likely.

Your goal is to say “stop” when the smallest number is presented to you. You
only get to say “stop” once; after that no more numbers are presented to you. If you
say “stop” when presented with the smallest number you don’t lose or gain anything.
Otherwise (if you say your “stop” at the wrong time) you pay 100 dollars.

Use finite horizon dynamic programming to find a policy that minimizes your ex-
pected losses. The policy should be in the form: π = (d1, d2, d3) where,

dt : Xt → {“stop”, “continue”},

where,

Xt =

{
1, if the number presented at time t is smallest so far,

0, otherwise.

It is obvious that d3(1) = “stop” and d3(0) can be either “stop” or “continue” (in any
case you’ll lose 100 dollars if X3 = 0 and if you haven’t said “stop” earlier).

Answer the following (in any order that suits you):

a: Write a precise MDP formulation of the problem (time set, state space, action sets,
rewards, transitions, objective).

b: What are optimal decision rules d1(·), d2(·)?

c: What is the expected cost with the policy that you found?

d: If you wish, verify (e.g. by enumerating all possibilities) that your answers to either
(b), (c) or both are correct. This is without credit, but do it if you have time.
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Solution:
This problem is almost exactly the “secretary problem” as presented in Section

4.6.4 of [Put94] and handled in HW3, Problem 4. Here the “best candidate” has value
min{x1, x2, x3}.

There are two outcomes to this problem: “Stop correctly” and “Stop incorrectly”.
For a given a policy, π, denote the probability of “stopping correctly” by pπ, then the
expected losses are, 100(1 − pπ). Minimization of this quantity is like maximization of
pπ. Hence from this point on, the problem is exactly as in Section 4.6.4 with N = 3.

To model the problem as an MDP, we simply consider the problem of maximizing
pπ. An alternative solution would be to maximize −100(1− pπ). The difference will be
with rewards.

(a) (20pts):
This is a “possible solution”. There are others too.

T = {1, 2, 3}.

S = {0, 1,∆}.

Here s = 0 implies the current candidate is not the best observed so far; s = 1 implies
that the current candidate is the best observed so far; s = ∆ implies we have stopped
(game over).

For the action sets, there are several options. Here is one:

A0 = A1 = {stop, continue}, A∆ = {don’t care}.

The (expected rewards) are generally time-dependent. First, rt(0, a) = rt(∆, a) = 0
for t = 1, 2, 3 and any action a. Further, rt(1, continue) = 0 for t = 1, 2, 3. Finally,

r1(1, stop) =
1

3
, r2(1, stop) =

2

3
, r3(1, stop) = 1.

Note that the above rewards are for the problem of maximizing pπ.
As in any stopping problem, the transition probabilities between states 0 and 1 do

not depend on the action. For t = 1, 2:

pt(0|0) =
t

t+ 1
, pt(1|0) =

1

t+ 1
.

Further (for t = 1, 2):

pt(0|1) =
t

t+ 1
, pt(1|1) =

1

t+ 1
.

Finally, pt(∆|s, a) = 1 if a = stop and is 0 otherwise.
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(b + c) (40pts + 40pts):
As in [Put94], Denote u∗t (1) to be the maximum probability of choosing the best

candidate when Xt = 1. Further denote u∗t (0) to be the maximum probability of choosing
the best candidate when Xt = 0.

Hence u∗3(1) = 1 and u∗3(0) = 0. The optimality equations for t = 1, 2 are,

u∗t (1) = max
{ t

3
,

1

t+ 1
u∗t+1(1) +

t

t+ 1
u∗t+1(0)

}
, (1)

u∗t (0) = max
{

0,
1

t+ 1
u∗t+1(1) +

t

t+ 1
u∗t+1(0)

}
. (2)

By noticing that the right element in the maximum of u∗t (0) is non-negative, these
simplify to:

u∗t (0) =
1

t+ 1
u∗t+1(1) +

t

t+ 1
u∗t+1(0),

u∗t (1) = max
{ t

3
, u∗t (0)

}
.

Now that all that remains is to find the solution using backward induction. First for
t = 2:

u∗2(0) =
1

3
u∗3(1) +

2

3
u∗3(0) =

1

3
,

u∗2(1) = max
{2

3
, u∗2(0)

}
=

2

3
,

moving to t = 1:

u∗1(0) =
1

2
u∗2(1) +

1

2
u∗2(0) =

1

2
,

u∗1(1) = max
{1

3
, u∗1(0)

}
=

1

2
.

One way to see the decision rule is to look at the original equations (1) and (2) with the
values substituted in and see which action is maximizing. For t = 1:

u∗1(1) = max
{1

3
,

1

2
u∗2(1) +

1

2
u∗2(0)

}
= max

{1

3
,

1

2
},

u∗1(0) = max
{

0,
1

2
u∗2(1) +

1

2
u∗2(0)

}
= max

{
0,

1

2
}.

Hence d1(1) = “continue” and d1(0) = “continue”.
For t = 2:

u∗2(1) = max
{2

3
,

1

3
u∗3(1) +

2

3
u∗3(0)

}
= max

{2

3
,

1

3
},

u∗2(0) = max
{

0,
1

3
u∗3(1) +

2

3
u∗3(0)

}
= max

{
0,

1

3
}.

Hence d2(1) = “stop” and d3(0) = “continue”.
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So an optimal policy is to continue on the first number, then if the second number
is greater than the first number stop, otherwise wait for the third number.

The value of the MDP is u∗1(1) = 1
2
. I.e. pπ

∗
= 1

2
.

So the expected cost is 50.

(d) (0pts):
This can be checked simply by looking at all permutations assume the numbers are

xi = i.

(1, 2, 3)→ lose

(1, 3, 2)→ lose

(2, 1, 3)→ win

(2, 3, 1)→ win

(3, 1, 2)→ win

(3, 2, 1)→ lose

Indeed we win in half of the cases.

4


