
MATH4406 Assignment 1

Daniel Sutherland - 42314396

August 12, 2014

Unless it’s otherwise stated, each exercise uses the definitions and variables currently in use
at the point of the exercise in the notes (e.g. when Yoni has defined a random variable X and
asked us to show something about X, the same definition of X is implicitly assumed).

Exercise 1. Part I. As ∅ ∈ F and F is closed under complementations, we have ∅c = Ω ∈ F .
Part II. Observe firstly that ∩iAi = (∪i(Aci ))

c Now, we know that Aci ∈ F because F is
closed under complementation. Hence ∪i(Aci ) ∈ F , because F is closed under countable unions.
Finally, closure under complementation (again) gives us ∩iAi = (∪i(Aci ))

c ∈ F .

Exercise 2. Part I. Observe A∩Ac = ∅ and A∪Ac = Ω, so 1 = P (A ∪Ac) = P (A) +P (Ac).
Rearranging, P (Ac) = 1− P (A).
Part II. Observe ∅ = Ωc, so by previous part P (∅) = 0.
Part III. A1∪A2 = A1∪(A2\(A2∩A1) (and these two sets are now disjoint). Hence P (A1 ∪A2) =
P (A1) +P (A2 \ (A2 ∩A1)). Now A2 = (A2 ∩A1)∪ (A2 \ (A2 ∩A1)), so P (A2) = P (A2 ∩A1) +
P (A2 \ (A2 ∩A1)). Combining the two, P (A1 ∪A2) = P (A1) + P (A2)− P (A2 ∩A1).

Exercise 4. A and B are independent iff P (A ∩B) = P (A)P (B). Now by (1.1), P (A ∩B) =
P (A |B)P (B). Combining the two, A and B are independent iff P (A |B)P (B) = P (A)P (B),
that is P (A |B) = P (A).

Exercise 5. We are calculating P (roll 6 | even) = P (roll 6 ∩ even) /P (even) = 1/6×1/2
1/2 . Eval-

uating this, the required probability is 1/3.

Exercise 8. Part I. Recall FX(x) = P (X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}). Then limx→−∞ FX(x) =
limx→−∞ P ({ω ∈ Ω : X(ω) ≤ x}) = P (∅). Now P (∅) = 0, so limx→−∞ FX(x) = 0
Part II. Similarly limx→∞ FX(x) = limx→∞ P ({ω ∈ Ω : X(ω) ≤ x}) = P (Ω). Now P (Ω) = 1,
so limx→∞ FX(x) = 1.
Part III. Consider x > y. Then FX(x) − FX(y) = P (X ≤ x) − P (X ≤ y) . Reverting to the
longhand, we have

FX(x)− FX(y) = P ({ω ∈ Ω : X(ω) ≤ x} ∩ {ω ∈ Ω : X(ω) ≤ y})
= P ({ω ∈ Ω : y < X(ω) ≤ x}) ≥ 0,

because probabilities are positive. Hence FX(x)− FX(y) ≥ 0, and so FX(·) is non-decreasing.

Exercise 9. We need to calculate the probability of getting each value in {2, . . . , 12}. We
do so by counting the number of ways to get that sum (including order) and that there are 36
possible 2-tuples. For example there is 3 ways to get a sum of 4 ((1, 3), (2, 2) and (3, 1)), so the
probability of a sum of 4 from to dice rolls is 3/36 = 1/12. The probabilities are (here S is the
sum):
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i 2 3 4 5 6 7 8 9 10 11 12

P (S = i) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

P (S ≤ i) 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 36/36

(i.e.) 1/36 1/18 1/6 5/18 5/12 7/12 13/18 5/6 11/12 35/36 1

Hence the plot is:
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Exercise 10. We have the same probabilities as in Exercise 9:

i 2 3 4 5 6 7 8 9 10 11 12

P (S = i) 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

Hence the plot is:
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Although it is hard to see, there is a blue line running along the x-axis (other than where it is
clearly interrupted by open circles).
The CDF increases at the points where the PMF is non-zero. Indeed it increases by exactly the
value of the PMF. Equivalently, the CDF is the running “height” of the PMF so far.
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Exercise 11. Using the table from Exercise 10, we have E[S] =
∑12

i=2 iP (S = i) = 7. (Makes
intuitive sense as we have symmetry about 7).

Exercise 12. X is non-negative, so

E[X] =

∞∑
k=1

kpX(k)

=

∞∑
k=1

k∑
i=1

pX(k)

=

∞∑
i=1

∞∑
k=i

pX(k) (1)

=

∞∑
i=1

FX(x).

By Tonelli’s theorem the interchange of order of summation in (1) is justified.

Exercise 13. I’m not quite sure what Yoni meant by illustrate this through the
meaning of a random variable, so you can skip marking this question (I’ve included
41 exercises in total).
Part I. We have E[cX] =

∑∞
k=−∞ ckpX(k) = c

∑∞
k=−∞ kpX(k), via the law of the unconscious

statistician. But
∑∞

k=−∞ kpX(k) = E[X], so E[cX] = cE[X].
Part II. E[X + Y ] =

∑∞
k=−∞ kP (X + Y = k) =

∑∞
k=−∞ k

∑∞
i=−∞ P (X = i, Y = k − i), where

the second equality is due to the law of total probability. Now, letting j = k − i, we have

E[X + Y ] =
∞∑

j=−∞

∞∑
i=−∞

(i+ j)P (X = i, Y = j)

=
∞∑

i=−∞
i
∞∑

j=−∞
P (X = i, Y = j) +

∞∑
j=−∞

j
∞∑

i=−∞
P (X = i, Y = j)

=
∞∑

i=−∞
iP (X = i) +

∞∑
j=−∞

jP (Y = j) ,

where the interchange of summation order is by the Fubini–Tonelli theorem and the last equality
is by the law of total probability. Recognising the expectations of X and Y , we have E[X + Y ] =
E[X] + E[Y ].

Exercise 14. We have Var(c1X + c2) = E
[
(c1X + c2)

2
]
− (E[c1X + c2])

2, but from Exercise
13 we know E[c1X + c2] = c1E[X] + c2. Now expanding the squares,

Var(c1X + c2) = E
[
c21X

2 + 2c1c2X + c22
]
−
(
c21E[X]2 + 2c1c2E[X] + c22

)
= c21E

[
X2
]

+ 2c1c2E[X] + c22 − c21E[X]2 − 2c1c2E[X]− c22
= c21

(
E
[
X2
]
− E[X]2

)
= c21 Var(X)

Hence, Var(c1X + c2) = c21 Var(X).
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Exercise 17. We will show the sum is 1 in the reverse direction using the Binomial Theorem.
We have,

1 = 1n

= (p+ (1− p))n

=
n∑
i=0

(
n

i

)
pi(1− p)n−i (2)

=
n∑
i=0

P (X = i) ,

where (2) is by the Binomial Theorem. Hence,
∑n

i=0 P (X = i) = 1.

Exercise 18. Part I. Let (Xi, i = 1, . . . n) be the value of the ith trial (1 for success, 0 for
failure), so that X =

∑n
i=1Xi. Then E[X] =

∑n
i=1 E[Xi] =

∑n
i=1(1p + 0(1 − p)), because the

Xi are iid Bernoulli trials. Hence E[X] =
∑n

i=1 p = np.
Part II. The distribution of Z is binomial with parameter (1 − p) (and n trials). To see this
observe that if we let Zi = 1−Xi (where Xi are as above), then Z = n−X = n−

∑n
i=1Xi =∑n

i=1 Zi. Now Zi are iid Bernoulli random variables with probability (1 − p) of success, so
Z ∼ Bin(n, 1− p).

Exercise 19. Assuming that all answers are equally likely, the probability of success is 1
4 .

Let X be the number of correct questions. Then X ∼ Bin(20, 1/4), so the probability of getting
10 or more correct answers is given by P (X ≥ 10)

∑20
i=10

(
20
i

)
(1/4)i(3/4)20−i. Evaluating this,

we have P (X ≥ 10) ≈ 0.01386.

Exercise 20. To get our first success at exactly the kth trial, we must have all of the first
k − 1 trials fail (which happens with probability (1 − p)k−1 =

∏k−1
i=1 (1 − p), recalling each

trial is independent), and the kth trial must be a success (which happens with probability p).
Combining these, the probability our first success is the kth trial (i.e. P (X = k)) is (1−p)k−1p.
So P (X = k) = (1− p)k−1p.

Exercise 21. We need all twenty rides to not have a flat tire. If the probability of a flat tire
is 0.01, then the probability of not getting a flat tire is 0.99. Hence the probability of not getting
a flat tire in 20 consecutive rides (assuming all bike rides are independent) is 0.9920 ≈ 0.8179.

Exercise 22. Let Y be the number of failures until success. Then Y = X−1 (where X is the
number of trial until success). Hence Y has support over {0, 1, . . . ,∞}. Further the distribution
of Y is given by P (Y = k) = P (X = k + 1) = (1− p)kp.
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Exercise 26. We have

E[X] =
∞∑
k=0

ke−λ
λk

k!

= e−λ
∞∑
k=1

k
λk

k!

= e−λλ
∞∑
k=1

λk−1

(k − 1)!

= λe−λ
∞∑
k=0

λk

k!

= λe−λeλ (3)

= λ,

where we have used the Taylor series definition of the exponential in (3). Hence E[X] = λ.
Now,

E
[
X2
]

=

∞∑
k=0

k2e−λ
λk

k!

= λe−λ

( ∞∑
k=1

k
λk−1

(k − 1)!

)

= λe−λ

( ∞∑
k=2

(k − 1)
λk−1

(k − 1)!
+

∞∑
k=1

λk−1

(k − 1)!

)

= λe−λ

(
λ

∞∑
k=2

λk−2

(k − 2)!
+

∞∑
k=1

λk−1

(k − 1)!

)

= λe−λ

(
λ

∞∑
k=0

λk

k!
+

∞∑
k=0

λk

k!

)
= λ(λ+ 1) (4)

= λ2 + λ. (5)

Recalling that Var(X) = E
[
X2
]
− E[X]2, we have Var(X) = λ2 + λ− λ2 = λ.

Exercise 27. We have

lim
n→∞

(
n

k

)
(
λ

n
)k(1− λ

n
)n−k =

(
lim
n→∞

λk
)(

lim
n→∞

(1− λ

n
)−k
)(

lim
n→∞

(1− λ

n
)n
)(

lim
n→∞

(
n

k

)
1

nk

)
.

Now we must simply evaluate each factor. Clearly limn→∞ λ
k = λk and limn→∞(1− λ

n)−k = 1.

It is well known that limn→∞(1 + −λ
n )n = e−λ (the exponential function is sometimes defined
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this way). Finally,

lim
n→∞

(
n

k

)
1

nk
= lim

n→∞

∏k+1
i=0 (n− i)
k!nk

= lim
n→∞

∏k+1
i=0 (n− i)
k!nk

= lim
n→∞

nk +O(nk−1)

k!nk

= lim
n→∞

nk

k!nk
+ lim
n→∞

O(nk−1)

k!nk

=
1

k!
+ 0.

Now combining each of these factors, we have

lim
n→∞

(
n

k

)
(
λ

n
)k(1− λ

n
)n−k = λk × 1× e−λ × 1

k!
= e−λ

λk

k!
,

as required.

Exercise 28. We have E[X] =
∑∞

k=1
k

k(k+1) =
∑∞

k=1
1

k+1 . Now letting i = k + 1, E[X] =∑∞
i=2 1/i =

∑∞
i=0 1/i − 3/2. It is well known that

∑∞
i=0 1/i, i.e. the harmonic series, diverges

to infinity, and so it is clear that E[X] also diverges to infinity.

Exercise 29. We have P (X = k) =
∑∞

l=−∞ P (X = k, Y = l) (via the law of total probability,
provided X and Y are discrete random variables). Matching with the form of the law of total
probability given in the notes, we’ve used A = {ω ∈ Ω : X(ω) = k}, and Bl = {ω ∈ Ω : X(ω) =
l}, for l ∈ {0, 1, . . .}. Now substituting pX(k) = P (X = k) and pX,Y (k, l) = P (X = k, Y = l),
we have pX(k) =

∑∞
l=−∞ pX,Y (k, l), as required.

Exercise 30. Now,

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY − E[X]Y − E[Y ]X + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]− E[Y ]E[X] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ] ,

as required. Here we’ve used that E[aZ] = aE[Z] for any constant a, and that E[Z] is a constant
for any random variable Z.

Exercise 31. E[XY ] =
∑
i = −∞∞

∑
j = −∞∞ijpX,Y (i, j). But for X and Y independent,

pX,Y (i, j) = pX(i)pY (j), so E[XY ] =
∑
i = −∞∞

∑
j = −∞∞ijpX(i)pY (j). Separating the

sums, E[XY ] =
∑
i = −∞∞ipX(i)

∑
j = −∞∞jpY (j) = E[X]E[Y ]. Now substituting this

into the previous result, Cov(X,Y ) = E[X]E[Y ]− E[X]E[Y ] = 0.

Exercise 32. Part I. Consider pX,Y as given by Table 1. Then E[XY ] = 11/4, E[X] = 7/4
and E[Y ] = 3/2. Hence Cov(X,Y ) = 11/4− 21/8 = 1/8 6= 0.
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y

x

pX,Y (x, y) 1 2
1 1/4 1/4
2 1/4 0
3 0 1/4

Table 1: Cov(X,Y ) 6= 0.

Part II. Consider pX,Y as given by Table 2. Then E[XY ] = 13/3, E[X] = 13/5 and E[Y ] = 5/3.
Hence Cov(X,Y ) = 13/3 − 13/3 = 0. However, pX(2)pY (1) = 2/15 × 1/3 = 2/45 6= 0 =
pX,Y (2, 1), so X and Y are not independent.

y

x

pX,Y (x, y) 1 2
1 1/15 1/15
2 0 2/15
3 4/15 7/15

Table 2: Cov(X,Y ) = 0, but X and Y not independent.

Exercise 33. Firstly, pX|Y=l(k, l) ≥ 0, because pX,Y (k, l) ≥ 0 and pY (l) > 0. Further, we
have

∞∑
k=−∞

pX|Y=l(k, l) =

∑∞
k=−∞ pX,Y (k, l)

pY (l)
=
pY (l)

pY (l)
= 1

(recalling that pY (l) > 0 so we are not dividing by 0 ever). Hence pX|Y=l(·, l) is a valid PMF.

Exercise 34. We have pX|Y=l(k, l) =
pX,Y (k,l)
pY (l) . But if X and Y are independent, then

pX,Y (k, l) = pX(k)pY (l), so pX|Y=l(k, l) = pX(k)pY (l)
pY (l) = pX(k).

Exercise 38.

E[E[h(X) |Y ]] =

∞∑
l=−∞

[ ∞∑
k=−∞

h(k)pX|Y=l(k, l)

]
pY (l)

=
∞∑

l=−∞

∞∑
k=−∞

h(k)pX,Y (k, l)

=

∞∑
k=−∞

h(k)

∞∑
l=−∞

pX,Y (k, l)

=

∞∑
k=−∞

h(k)pX(k)

= E[h(X)] ,

where once again the swapped order of summation is valid by the Fubini–Tonelli theorem.

Exercise 40. Part I.
∫∞
−∞ fX(x) dx = 1.

Part II. The CDF is
∫ x
−∞ fX(x) dx. This CDF is continuous provided the random variable X

does not have positive probability of falling on any specific point. In other words, if X is a
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purely continuous function with no discrete parts. The PDF does not have to be continuous
(or even exist), see e.g. the Cantor distribution.
Part III. As well as being non-negative, there must exist some set A ⊂ R such that f̃(x) > 0

for all x ∈ A (i.e. f̃ 6≡ 0). Then fX(x) = Kf̃(x) will be a density for K =
(∫∞
−∞ f̃(x) dx

)−1
.

That is K is chosen as a normalising constant so that the integral of fX over R is equal to 1.

Exercise 41. For X uniform on [a, b], E[X] =
∫ b
a

x
b−a dx = (a+b)(a−b)

2(a−b) = a+b
2 . Intuitively, E[X]

is the midpoint of the interval. Now

E
[
X2
]

=

∫ b

a

x2

b− a
dx =

b3 − a3

3(b− a)

, so

Var(X) =
b3 − a3

3(b− a)
− a2 + 2ab+ b2

4

=
4b3 − 4a3 − 3(a2b+ 2ab2 + b3 − a3 − 2a2b− b2a)

12(b− a)

=
b3 − a3 − 3ab2 + 3a2b

12(b− a)

=
(b− a)3

12(b− a)

=
(b− a)2

12
.

Exercise 42. For X ∼ Unif(a, b), the CDF of X is given by

FX(x) =


0 if x < a
x−a
b−a if x ∈ [a, b]

1 if x > b.

Exercise 46. P (Y = y) = λ
∫ byc+1
byc e−λx dx = e−λbyc − e−λ(byc+1), for all y ∈ {0, 1, . . .} (and

P (Y = y) = 0 otherwise).

Exercise 51. The code used was:

n = 10000; X = rand (n , 1 ) < 0 . 2 5 ;
xbar = sum(X)/n ;
fpr intf ( ’ sample mean : %f , sample var : %f \n ’ , xbar , . . .

sum( (X − xbar ) . ˆ 2 ) / n)
%not sure i f we cou ld use mean() and var ( ) , so demonstrated
%my a b i l i t y to do wi thout here − w i l l use them fo r the o ther
%que s t i on s .

The results are sample mean, 0.2546, and sample variance, 0.1898. The values are both within
0.01 of the theoretical values (0.25 and 0.1875 respectively).

Exercise 52. F (x) = 1 − e−λx, so F−1(u) = −1
λ ln(1 − u). Notice that since we will be

drawing u from a uniform distribution on [0, 1], we can equivalently transform by −1λ ln(u). The
code used:
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Figure 1: Histogram of simulated exponential random variables.

n = 10000; X = −log (rand (n , 1 ) ) / ( 1 / 2 ) ;
fpr intf ( ’ sample mean : %f , sample var : %f \n ’ , mean(X) , var (X, 1 ) )
hist (X, 4 0 ) ;
xlabel ( ’$X$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,14 , ’ f ontwe ight ’ , ’ bold ’ )
ylabel ( ’ Count ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ ,14 , ’ f ontwe ight ’ , ’ bold ’ )
set (gca , ’ f o n t s i z e ’ , 12)

f i l ename = ’ Ex52 . pdf ’ ; f i g = gcf ;
set ( f i g , ’ Units ’ , ’ c en t imete r s ’ ) ;
set ( f i g , ’ PaperUnits ’ , ’ c en t imete r s ’ ) ;
pos = get ( f i g , ’ Po s i t i on ’ ) ;
set ( f i g , ’ PaperSize ’ , pos ( 3 : 4 ) ) ;
set ( f i g , ’ PaperPositionMode ’ , ’ auto ’ ) ;
print ( ’−dpdf ’ , f i l ename )

The histogram is given in Figure 1. The sample mean was 1.9725, and the sample variance was
3.9078. This is once again quite close to the theoretical values of 2 and 4 respectively.

Exercise 53. The sample frequencies are (in the same order) [0.3495, 0.2561, 0.1016, 0.2928].
Once again these are quite close to the theoretical values (all within 0.01). The code use is:

%crea t e an anonymous func t i on which t a k e s parameters p and n and
%re turns n va l u e s drawn from the d i s t r i b u t i o n p ( or i f p i s not a
%proper d i s t r i b u t i o n , then the d i s t r i b u t i o n a r i s i n g from
%snorma l i s ing p ) .
gen rand = @(p , n ) (sum( bsxfun (@gt , rand (n , 1 ) , . . .

reshape (cumsum(p)/sum(p ) , [ 1 , length (p ) ] ) ) , 2) + 1 ) ;
n = 10000;
X = gen rand ( [ 0 . 3 5 , 0 . 25 , 0 . 1 , 0 . 3 ] , n ) ;
counts = sum( bsxfun (@eq , X, [ 1 , 2 , 3 , 4 ] ) , 1)/n ;
disp ( counts ) ;
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Exercise 56. To ensure an iid sequence we need transitions to be independent of the state
we are currently in (all values in each column are equal). We also need it to be equally likely to
transition to each state (all values in each row are the same). Together these say that all entries
must be the same. Now combining this with the knowledge rows must sum to 1, we know we
should use the matrix P such that every entry is 1/N .

Exercise 58. The transition probabilities are given by

pij =



1 if i ∈ {0, L} ∧ j = i

0 if i ∈ {0, L} ∧ j 6= i

p if i 6∈ {0, L} ∧ j = i+ 1

1− p if i 6∈ {0, L} ∧ j = i− 1.

0 if i 6∈ {0, L} ∧ j 6∈ {i− 1, i+ 1}

Exercise 63. Let S be the set of states. Consider states i, j, k such that i ↔ j and j ↔ k.

Then we want to show i ↔ k (i.e. transitivity). Now, i → j =⇒ ∃t1 : p
(t1)
ij > 0, and likewise

j → k =⇒ ∃t2 : p
(t2)
jk > 0. Chapman-Kolmogorov say p

(t1+t2)
ik =

∑
l∈S p

(t1)
il p

(t2)
lk ≥ p

(t1)
ij p

(t2)
jk > 0

(because all values of the summand are non-negative). Hence ∃t : p
(t)
ik > 0 (one such t is

t = t1 + t2), and so i→ k.

The same argument applies in reverse to show i ← k. We have i ← j =⇒ ∃t3 : p
(t3)
ji > 0,

and likewise j ← k =⇒ ∃t4 : p
(t4)
kj > 0. So p

(t4+t3)
ki =

∑
l∈S p

(t4)
kl p

(t3)
li ≥ p

(t4)
kj p

(t3)
ji > 0. Hence

∃t : p
(t)
ki > 0 (one such t is t = t4 + t3), and so i ← k. So i → k and i ← k, i.e. i ↔ k, and we

have proved transitivity.

Exercise 65. Part I. Assume the states are {1, 2, 3}. Then the equivalence classes are {1}
and {2, 3}.
Part II. States 2 and 3 are recurrent because once we enter the subchain defined by 2 and 3, we
can’t leave it, we simply move between 2 and 3 visiting each infinitely often. State 1 is transient
- once we leave state 1 (which happens with probability 0.7 each jump) we can never return.
The next part also shows that f11 < 1 and f22 = f33 = 1.
Part III. This uses the equation derived by first step analysis on page 26. Firstly observe that
i 6→ 1 for i = 2, 3, so fi1 = 0 for i = 2, 3. Now,

f11 = (p12f21 + p13f31) + p11 = 0.3,

f12 = (p11f12 + p13f32) + p12 = 0.3f12 + 0 + 0.7 =⇒ 0.7f12 = 0.7 =⇒ f12 = 1,

f13 = (p11f13 + p12f23) + p13 = 0.3f13 + 0.7f23 =⇒ f13 = f23, (6)

f22 = (p21f12 + p23f32) + p22 = 0 + 0.5f32 + 0.5, (7)

f23 = (p22f23 + p21f13) + p23 = 0.5f23 + 0 + 0.5 =⇒ f23 = 1, (8)

f32 = (p33f32 + p31f12) + p32 = 0.5f32 + 0 + 0.5 =⇒ f32 = 1, (9)

f33 = (p32f23 + p31f13) + p33 = 0.5f23 + 0 + 0.5. (10)

Equations (8) and (6) imply that f13 = 1, (8) and (10) imply that f33 = 1 and (9) and (7)
imply that f22 = 1. Hence we have f11 = 0.3, f21 = f31 = 0, and f12 = f13 = f22 = f23 = f32 =
f33 = 1.
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Exercise 68. Consider a finite state DTMC run for an infinite number of steps. If the finite
state DTMC has no recurrent state then the DTMC visits all states (of which there are finitely
many) only finitely often. Hence it only makes a finite number of steps. We have a contradiction,
and so there must be at least one recurrent state (this state(s) “soaks up” the infinite number
of steps).

Exercise 73. We may (equivalently) represent our sets as a binary (ordered) tuple of length
|A|, where the ith element of A is in the set iff the ith entry of the tuple is 1. It is clear there
is a bijective mapping between this representation and the sets. As such the number of sets in
2A is the number of possible tuples. There are 2 choices for each of the |A| entries in the tuple
so there are 2|A| possible tuples (and hence |2A| = 2|A|).

Exercise 75. A one-to-one mapping f : Z+ 7→ N is f(i) = f(i) + 1, hence Z+ is a countably
infinite set. A one-to-one mapping g : Z 7→ N is

g(i) =

{
2n if n > 0

−2n+ 1 if n ≤ 0,

and so Z+ is a countably infinite set. (To see this mapping is one-to-one notice that non-positive
number go to unique odd natural numbers while positive numbers go to unique even natural
numbers.)
Finally, an injective mapping from Q to Z is defined by

h!

(
p

q

)
= sgn

(
p

q

)
2|p|3|q|,

where p and q are coprimes (so that the rational is in simplest form). Then by the properties
of mappings, g ◦ f is an injective function from Q to N, so Q is countable. Now, N ( Q so the
cardinality of Q is at least that of N. Hence Q is both countable and infinite, i.e. countably
infinite.
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