
MATH4406 HW2 Joshua Song 2/9/2014

1

Problem 1: Inventory Control MDP

Part a

State space

If backlogged stock units are considered as negative units, then the state space is integers from

negative infinity to , where is the warehouse capacity. I.e.

 { }

Transition Probabilities

Let be the number of units in period ,

Let be the number of units ordered in period , { }

Let be the number of units in period

Let be the number of units ordered by customers, { }

Let be the probability of getting customer orders.

Define as the probability of customer orders exceeding or equalling , i.e.

 ∑

Note three statements:

 The probability that exceeds is 0.

 occurs iff , so the probability that is

 occurs iff

Therefore the transition probabilities can be defined as:

 (|) {

MATH4406 HW2 Joshua Song 2/9/2014

2

Expected rewards

Let () be the revenue for delivering units to customers, () if

If , revenue can be received for new customer orders, up to a maximum of orders.

But if the number of customers orders , the maximum revenue is ().

Therefore the expected present value of the revenue received in a month is:

 () ∑ () ()

Let () be the cost of ordering units

Let () be the cost of maintaining an inventory of units for a month, () if

Let be the number of units in backlog, | ()|

Let () be the cost of having units backlogged for a month

It was assumed that delivery to customers can only happen at the end of each month, even if there is a

backlog.

The revenue received for filling backlogged orders is (())

Therefore the expected reward is:

 () () (()) () (()) ()

The value of terminal inventory is:

 () ()

Part b

The values provided are:

 () {

 () () () ()

{

The expected revenue is shown in Table 1.

Table 1: Expected revenue

 ()

0

1

2

3

MATH4406 HW2 Joshua Song 2/9/2014

3

Matlab was used to generate the expected rewards, shown in Table 2. X indicates impossible cases,

where () exceeds warehouse capacity , which in is 3. Note that can extend to negative

infinity. The code can be found in Appendix A.

Table 2: Expected rewards

 ()

 0 1 2 3

-7 -21 -20 -15 -10

-6 -18 -17 -12 -7

-5 -15 -14 -9 -4

-4 -12 -11 -6 -1

-3 -9 -8 -3 2

-2 -6 -5 0 3

-1 -3 -2 1 0

0 0 -1 -2 -5

1 5 0 -3 X

2 6 -1 X X

3 5 X X X

The transition function is shown in Table 3. Note that can extend to negative infinity.

Table 3: Transition function

 (|)

 -4 -3 -2 -1 0 1 2 3

-2

 0 0 0 0 0

-1 0

 0 0 0 0

0 0 0

 0 0 0

1 0 0 0

 0 0

2 0 0 0 0

 0

3 0 0 0 0 0

MATH4406 HW2 Joshua Song 2/9/2014

4

Part c

The state space, transition probabilities and expected rewards have been stated in the previous

sections.

Decision epochs:

 { }

Actions

The action is the amount of additional stock to order, which is limited by the warehouse capacity.

Since existing stock can be negative to indicate backlogged orders,

 { }

Where ()

Problem 2: Queueing Control MDP
Problem 3.21 was chosen. A diagram of the system is shown in Figure 1.

Figure 1: Admission control system

Decision epochs:

It is assumed that the controller makes decisions every units of time.

 { }

States:

Let be the number of jobs in eligible job queue 1

Let be the number of jobs in eligible job queue 2

Let be the number of jobs in the potential job queue

It is assumed that jobs pass through the server instantaneously upon completion.

 { } { } { }

Potential

job queue

Eligible job

queue 1 Server 1

Server 2
Eligible job

queue 2

Controller

Reject

Admit to

queue 1
Job arrival

Job done

Job done
Admit to

queue 2

MATH4406 HW2 Joshua Song 2/9/2014

5

Actions:

The controller can submit jobs to eligible job queues 1 and 2, but it is assumed that the controller

cannot duplicate jobs and send the same job to both queues. The total number of jobs submitted to the

eligible job queues cannot exceed the number of jobs in the potential job queue.

Let be the number of jobs submitted to eligible job queue 1

Let be the number of jobs submitted to eligible job queue 2

 {() | }

Rewards:

Let be the constant reward received for every completed job

Let () be the holding cost for jobs at server and its eligible queue,

Let be a random variable denoting the number of jobs completed by queue at period .

Let () be the time invariant probability of jobs completed by queue

 () ()

If the number of possible jobs completed exceeds the number of eligible jobs , only

jobs are completed. Hence the expectation for the number of jobs completed in period is:

 { ()} ∑ ()

 () ∑ ()

Therefore the expected reward is:

 () { ()} { ()} ()

Transition probabilities:

Let

 denote the state variables in the next period

Note three statements for the eligible job queue:

 The number of jobs in the queue next state
 cannot exceed

 If the maximum number of jobs that could be completed exceeds the number of jobs in the

eligible job queue, the number of jobs in the next state is

 If , then

Define a helper probability function as follows:

 (
 |)

{

 (

)

[∑ ()

]

MATH4406 HW2 Joshua Song 2/9/2014

6

Let () be the time invariant probability of jobs entering the potential job queue in period

The transition probability function is then:

 (

 |) (

 |) (
 |) (

)

Possible operating policy

Depending on the job completion probability, reward and holding cost, there would be a constant

number of jobs that is most likely to give the highest reward for each eligible job queue. The

controller should try to allocate jobs to meet this number and rejecting excess jobs. If there is

insufficient jobs, the controller should submit more jobs to the faster queue, that is, the queue with

higher average ().

MATH4406 HW2 Joshua Song 2/9/2014

7

Problem 3: More MDP Examples
Problem 3.26 was chosen.

Decision Epochs:

The lion can make one decision per day.

 { }

States:

The state is the energy reserve of the lion in kg of meat, with a maximum reserve of 30 kg. If

becomes negative, the lion dies.

 { |

Actions:

The lion can choose whether to hunt or not, and if hunting, the lion can choose the size of the group.

Let be an integer representing the action, with meaning the lion chose not to hunt on that

day. It is assumed that although a hunt consumes 0.5 kg of energy, there are no energy requirements

restricting ability to hunt.

 { }

Rewards:

To maximise the probability of survival, the lion should maximise its energy reserve, so here the

reward is the current energy reserve and the expected energy reserve change from going on a hunt.

Let () be the probability of a successful hunt in a group of size

 ()

{

The lion consumes 6 kg per day, 0.5 kg is consumed for a hunt, and each lion has a capacity of 30 kg.

The energy reserve gained from a successful hunt is divided equally, so each lion gains 164/ kg

where is the group size.

 () {

 (() (

))

Transition Probabilities:

 (|) {
 () (

)

 ()

MATH4406 HW2 Joshua Song 2/9/2014

8

Problem 5: Restless bandits

Decision epochs:

 { }

Where is 30 minutes

States:

Where is the set of states for bandit ,

 { }

Where

Actions:

Define an action as a set of integers indicating which bandit(s) are selected. Number of bandits

selected must be equal to or less than 2, i.e. | | . Hence:

 { { } { } { } { } { } { }}

Rewards:

Cost = number of screaming bandits + number of feeding (active) bandits

Define

 () {

Then

 ((
)) () () () | |

Transition probabilities:

For an active bandit, the transition probability matrix is:

 [

]

For a passive bandit:

 [

]

Hence

 (
 |) {

 ((
)|()) (

 |) (
 |) (

 |)

MATH4406 HW2 Joshua Song 2/9/2014

9

Stationary Markov policy:

The cost is minimised by minimising the number of times a bandit is in state 3 (screaming) and the

number of times a bandit is selected to be active. Since a bandit in state 3 has a high probability

() of going to state 1 or 2 when active, a possible policy is to select bandits that are in

state 3.

I.e. the decision rule would be:

 (
)

{

{ }

{ }

{ }

{ }

{ }

{ }

Matlab was used to simulate 10,000 time steps to evaluate the average cost per step of this policy. The

result was found to be approximately 2 (the results varied around 1.99 to 2.01). The Matlab code can

be found in Appendix B.

MATH4406 HW2 Joshua Song 2/9/2014

10

Appendix A: Matlab code for Problem 1

F.m

function output = F(u)
%F Returns expected revenue
 if u <= 0
 output = 0;
 elseif u == 1
 output = 6;
 elseif u == 2
 output = 8;
 elseif u >= 3
 output = 8;
 end
end

O.m

function cost = O(a)
%O Returns cost of ordering a units
 if a == 0
 cost = 0;
 elseif a > 0
 cost = 4 + 2*a;
 end
end

r.m

function reward = r(s, a)
%R Returns expected reward
 d = abs(min(0,s));
 reward = F(s+a) + 8*(min(d,a)) - O(a) - (a+max(0,s)) - 3*d;
end

makeMatrix.m

m=zeros(11,4);
for a=0:3,
 for s=-7:3,
 if max(s,0)+a<=3
 m(s+8,a+1)=r(s,a);
 else
 m(s+8,a+1)=999; % 999 indicates impossible case
 end
 end
end
m

MATH4406 HW2 Joshua Song 2/9/2014

11

Appendix B: Matlab code for Problem 5

r.m

function reward = r(s ,a)
%R Reward function
 reward = 0;
 for i = 1:numel(s)
 if s(i) == 3
 reward = reward - 1;
 end
 end
 reward = reward - numel(a);
end

d.m

function a = d(s)
%D Decision rule. Returns action given states
 if s(1) ~= 3 && s(2) ~= 3 && s(3) ~= 3
 a = [];
 elseif s(1) == 3 && s(2) ~= 3 && s(3) ~= 3
 a = [1];
 elseif s(1) ~= 3 && s(2) == 3 && s(3) ~= 3
 a = [2];
 elseif s(1) ~= 3 && s(2) ~= 3 && s(3) == 3
 a = [3];
 elseif s(1) == 3 && s(2) == 3
 a = [1, 2];
 elseif s(1) == 3 && s(2) ~= 3 && s(3) == 3
 a = [1, 3];
 elseif s(1) ~= 3 && s(2) == 3 && s(3) == 3
 a = [2, 3];
 end
end

MATH4406 HW2 Joshua Song 2/9/2014

12

sampleResult.m

function u = sampleResult(s, a)
%P Samples a set of states resulting from input states and action

 % Set transition probability matrices
 Pa = [0.6 0.1 0.3; 0.5 0.2 0.3; 0.3 0.6 0.1];
 Pp = [0.6 0.1 0.3; 0.1 0.3 0.6; 0.2 0.1 0.7];

 % Initialise array of resulting states
 u = zeros(1, numel(s));

 for i = 1:numel(s)

 % Choose the appropriate transition probability matrix
 if ismember(i, a)
 P = Pa;
 else
 P = Pp;
 end

 % Generate random number, 0 < x < 1, to set resulting state
 x = rand();
 if x < P(s(i), 1)
 u(i) = 1;
 elseif x < P(s(i), 1) + P(s(i), 2)
 u(i) = 2;
 else
 u(i) = 3;
 end
 end
end

test.m

numTests = 10000;
totalReward = 0;
s = [1, 1, 1];

for i=1:numTests
 a = d(s);
 s = sampleResult(s, a);
 totalReward = totalReward + r(s, a);
end

averageCost = -totalReward / numTests;
fprintf('Average cost per step is %f\n', averageCost);

