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Problem 1: Inventory Control MDP 
 

Part a 

State space 

If backlogged stock units are considered as negative units, then the state space is integers from 

negative infinity to  , where   is the warehouse capacity. I.e. 

  {                    } 

Transition Probabilities 

Let   be the number of units in period  ,     

Let   be the number of units ordered in period  ,   {            } 

Let   be the number of units in period      

Let   be the number of units ordered by customers,   {       } 

                  

Let    be the probability of getting   customer orders.  

Define      as the probability of customer orders exceeding or equalling     , i.e. 

     ∑   

 

     

 

Note three statements: 

 The probability that   exceeds     is 0.  

     occurs iff      , so the probability that     is      

     occurs iff       

Therefore the transition probabilities can be defined as: 

  ( |   )  {
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Expected rewards 

Let  ( ) be the revenue for delivering   units to customers,  ( )    if     

 

If      , revenue can be received for new customer orders, up to a maximum of     orders.  

But if the number of customers orders     , the maximum revenue is  (   ). 

 

Therefore the expected present value of the revenue received in a month is: 

 (   )  ∑  ( )    (   )    

     

   

 

 

Let  ( ) be the cost of ordering   units 

Let  ( ) be the cost of maintaining an inventory of   units for a month,  ( )    if     

Let   be the number of units in backlog,   |   (   )| 

Let  ( ) be the cost of having   units backlogged for a month 

It was assumed that delivery to customers can only happen at the end of each month, even if there is a 

backlog.  

The revenue received for filling backlogged orders is  (   (   )) 

Therefore the expected reward is: 

  (   )   (   )   (   (   ))   ( )   (     (   ))   ( )                     

The value of terminal inventory is: 

  ( )   ( )             

Part b 

The values provided are: 

 ( )  {
    

 
    

      
      

  

 ( )            ( )            ( )            ( )                               

   

{
 
 

 
 

 

 

 
          

 

 
          

 

 
          

   

 

The expected revenue is shown in Table 1. 

 

Table 1: Expected revenue 

   ( ) 

0    

1   
 

 
   

 

 
    

2   
 

 
   

 

 
    

 

 
    

3   
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Matlab was used to generate the expected rewards, shown in Table 2. X indicates impossible cases, 

where    (   )    exceeds warehouse capacity  , which in is 3. Note that   can extend to negative 

infinity. The code can be found in Appendix A. 

 

Table 2: Expected rewards  

    (   )   

  0 1 2 3 

      

-7 -21 -20 -15 -10 

-6 -18 -17 -12 -7 

-5 -15 -14 -9 -4 

-4 -12 -11 -6 -1 

-3 -9 -8 -3 2 

-2 -6 -5 0 3 

-1 -3 -2 1 0 

0 0 -1 -2 -5 

1 5 0 -3 X 

2 6 -1 X X 

3 5 X X X 

 

 

The transition function is shown in Table 3. Note that     can extend to negative infinity. 

 

Table 3: Transition function 

  ( |   ) 

  -4 -3 -2 -1 0 1 2 3 

            

-2 
 

 
  

 

 
  

 

 
  0 0 0 0 0 

-1 0 
 

 
  

 

 
  

 

 
  0 0 0 0 

0 0 0 
 

 
  

 

 
  

 

 
  0 0 0 

1 0 0 0 
 

 
  

 

 
  

 

 
  0 0 

2 0 0 0 0 
 

 
  

 

 
  

 

 
  0 

3 0 0 0 0 0 
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Part c 

The state space, transition probabilities and expected rewards have been stated in the previous 

sections.  

 

Decision epochs: 

  {       }     

 

Actions 

The action is the amount of additional stock to order, which is limited by the warehouse capacity. 

Since existing stock   can be negative to indicate backlogged orders, 

   {         } 

Where      (     ) 

 

Problem 2: Queueing Control MDP 
Problem 3.21 was chosen. A diagram of the system is shown in Figure 1. 

 

 
Figure 1: Admission control system 

 

 

Decision epochs: 

It is assumed that the controller makes decisions every     units of time. 

  {            }     

 

States: 

Let    be the number of jobs in eligible job queue 1 

Let    be the number of jobs in eligible job queue 2 

Let    be the number of jobs in the potential job queue 

It is assumed that jobs pass through the server instantaneously upon completion. 

  {     }  {     }  {     }           
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Actions: 

The controller can submit jobs to eligible job queues 1 and 2, but it is assumed that the controller 

cannot duplicate jobs and send the same job to both queues. The total number of jobs submitted to the 

eligible job queues cannot exceed the number of jobs in the potential job queue.  

Let    be the number of jobs submitted to eligible job queue 1 

Let    be the number of jobs submitted to eligible job queue 2 

   {(     ) |                   } 

 

Rewards: 

Let   be the constant reward received for every completed job 

Let   ( ) be the holding cost for   jobs at server   and its eligible queue,           

Let      be a random variable denoting the number of jobs completed by queue   at period  . 

Let   ( ) be the time invariant probability of   jobs completed by queue   

  ( )   (      )           

 

If the number of possible jobs completed      exceeds the number of eligible jobs       , only       

jobs are completed. Hence the expectation for the number of jobs completed in period   is:  

 {   (          )}  ∑   ( )

       

   

 (     ) ∑  ( )

 

       

 

Therefore the expected reward is: 

  (           )      {   (          )}      {   (          )}   (           ) 

 

Transition probabilities: 

Let   
    

    
  denote the state variables in the next period  

Note three statements for the eligible job queue: 

 The number of jobs in the queue next state   
  cannot exceed       

 If the maximum number of jobs that could be completed exceeds the number of jobs in the 

eligible job queue, the number of jobs in the next state is   
    

 If        , then   
    

Define a helper probability function   as follows: 

 (  
 |     )  

{
  
 

  
 
  (        

 )         
   

[ ∑   ( )

 

       

 ]   
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Let  ( ) be the time invariant probability of   jobs entering the potential job queue in period    

The transition probability function is then: 

  (  
    

    
 |              )   (  

 |     ) (  
 |     ) (  

 ) 

Possible operating policy 

Depending on the job completion probability, reward and holding cost, there would be a constant 

number of jobs that is most likely to give the highest reward for each eligible job queue. The 

controller should try to allocate jobs to meet this number and rejecting excess jobs. If there is 

insufficient jobs, the controller should submit more jobs to the faster queue, that is, the queue with 

higher average  ( ).    
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Problem 3: More MDP Examples 
Problem 3.26 was chosen. 

 

Decision Epochs: 

The lion can make one decision per day. 

  {       } 

States: 

The state is the energy reserve of the lion in kg of meat, with a maximum reserve of 30 kg. If     

becomes negative, the lion dies.  

  {   |     

Actions: 

The lion can choose whether to hunt or not, and if hunting, the lion can choose the size of the group. 

Let     be an integer representing the action, with     meaning the lion chose not to hunt on that 

day. It is assumed that although a hunt consumes 0.5 kg of energy, there are no energy requirements 

restricting ability to hunt. 

   {       } 

   

Rewards: 

To maximise the probability of survival, the lion should maximise its energy reserve, so here the 

reward is the current energy reserve and the expected energy reserve change from going on a hunt. 

Let  ( ) be the probability of a successful hunt in a group of size     

 ( )  

{
  
 

  
 

       
          
          
          
          
          
          

 

The lion consumes 6 kg per day, 0.5 kg is consumed for a hunt, and each lion has a capacity of 30 kg. 

The energy reserve gained from a successful hunt is divided equally, so each lion gains 164/  kg 

where   is the group size.  

  (   )  {
      

   (   ( ) (
   

 
)        )    

 

 

Transition Probabilities: 

  ( |   )  {
 ( )                 (  

   

 
       )

   ( )                   
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Problem 5: Restless bandits 
 

Decision epochs: 

  {         }     

Where   is 30 minutes 

 

States: 

           

Where    is the set of states for bandit  , 

   {     } 

Where                                                           

 

Actions: 

Define an action      as a set of integers indicating which bandit(s) are selected. Number of bandits 

selected must be equal to or less than 2, i.e. | |   . Hence: 

   {  { } { } { } {   } {   } {   }}     

 

Rewards: 

Cost = number of screaming bandits + number of feeding (active) bandits  

Define  

 (  )  {
 
 
 
    

       
       
       

 

Then  

  (( 
       )  )    (  )   (  )   (  )  | | 

 

Transition probabilities: 

For an active bandit, the transition probability matrix is: 

   [
         
         
         

] 

For a passive bandit: 

   [
         
         
         

] 

Hence  

  ( 
 |    )  {

              

                 
 

  (( 
       )|(        )  )    ( 

 |    )    ( 
 |    )    ( 

 |    ) 
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Stationary Markov policy: 

The cost is minimised by minimising the number of times a bandit is in state 3 (screaming) and the 

number of times a bandit is selected to be active. Since a bandit in state 3 has a high probability 

(           ) of going to state 1 or 2 when active, a possible policy is to select bandits that are in 

state 3.  

I.e. the decision rule would be: 

  ( 
       )  

{
 
 
 

 
 
 

                  

{ }                  

{ }                  

{ }                  

{   }                            

{   }                  

{   }                  

          

 

Matlab was used to simulate 10,000 time steps to evaluate the average cost per step of this policy. The 

result was found to be approximately 2 (the results varied around 1.99 to 2.01). The Matlab code can 

be found in Appendix B.  
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Appendix A: Matlab code for Problem 1 
 

F.m 

function output = F( u ) 
%F Returns expected revenue 
    if u <= 0 
        output = 0; 
    elseif u == 1 
        output = 6; 
    elseif u == 2 
        output = 8; 
    elseif u >= 3 
        output = 8; 
    end 
end 

  

O.m 

function cost = O( a ) 
%O Returns cost of ordering a units 
    if a == 0 
        cost = 0; 
    elseif a > 0 
        cost = 4 + 2*a; 
    end 
end 

  

r.m 

function reward = r( s, a ) 
%R Returns expected reward 
    d = abs(min(0,s)); 
    reward = F(s+a) + 8*(min(d,a)) - O(a) - (a+max(0,s)) - 3*d; 
end 

  

 

makeMatrix.m 

m=zeros(11,4); 
for a=0:3, 
    for s=-7:3, 
        if max(s,0)+a<=3  
            m(s+8,a+1)=r(s,a); 
        else  
            m(s+8,a+1)=999;     % 999 indicates impossible case 
        end 
    end 
end 
m 
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Appendix B: Matlab code for Problem 5 
 

r.m 

function reward = r( s ,a ) 
%R Reward function 
    reward = 0; 
    for i = 1:numel(s) 
        if s(i) == 3 
            reward = reward - 1; 
        end 
    end 
    reward = reward - numel(a); 
end 

  

d.m 

function a = d( s ) 
%D Decision rule. Returns action given states 
    if s(1) ~= 3 && s(2) ~= 3 && s(3) ~= 3  
        a = []; 
    elseif s(1) == 3 && s(2) ~= 3 && s(3) ~= 3 
        a = [1]; 
    elseif s(1) ~= 3 && s(2) == 3 && s(3) ~= 3 
        a = [2]; 
    elseif s(1) ~= 3 && s(2) ~= 3 && s(3) == 3 
        a = [3]; 
    elseif s(1) == 3 && s(2) == 3 
        a = [1, 2]; 
    elseif s(1) == 3 && s(2) ~= 3 && s(3) == 3 
        a = [1, 3]; 
    elseif s(1) ~= 3 && s(2) == 3 && s(3) == 3 
        a = [2, 3]; 
    end 
end 
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sampleResult.m 

function u = sampleResult( s, a ) 
%P Samples a set of states resulting from input states and action 

  

    % Set transition probability matrices 
    Pa = [0.6 0.1 0.3; 0.5 0.2 0.3; 0.3 0.6 0.1]; 
    Pp = [0.6 0.1 0.3; 0.1 0.3 0.6; 0.2 0.1 0.7]; 

     
    % Initialise array of resulting states 
    u = zeros(1, numel(s)); 

     
    for i = 1:numel(s) 

         
        % Choose the appropriate transition probability matrix 
        if ismember(i, a) 
            P = Pa; 
        else 
            P = Pp; 
        end 

         
        % Generate random number, 0 < x < 1, to set resulting state 
        x = rand(); 
        if x < P(s(i), 1) 
            u(i) = 1; 
        elseif x < P(s(i), 1) + P(s(i), 2) 
            u(i) = 2; 
        else  
            u(i) = 3; 
        end 
    end 
end 
 

test.m 

numTests = 10000; 
totalReward = 0; 
s = [1, 1, 1]; 

  
for i=1:numTests 
    a = d(s); 
    s = sampleResult(s, a); 
    totalReward = totalReward + r(s, a); 
end 

  
averageCost = -totalReward / numTests; 
fprintf('Average cost per step is %f\n', averageCost); 

 


