
MATH4406 HW3 Joshua Song

Problem 1: Inventory Control

Set () () () ()

 (

) respectively

This gives the state and action space as:

 { } { }

The expected revenue is () ∑ () ()

 . The calculated values are shown in Table 1

Table 1: Expected revenue

 ()

0

1

2

The expected reward is calculated from () () () () as follows:

 () () () ()

 () () () () ()

 () () () () ()

 () () () ()

 () () () () ()

 () () () ()

This is summarised in Table 2.

Table 2: Expected rewards

 ()

 0 1 2

0 0 2 5

1 10 8 X

2 16 x X

MATH4406 HW3 Joshua Song

The transition probabilities are shown in Table 3.

Table 3: Transition function

 ()

 0 1 2

0 1 0 0

1

 0

2

Define
 () () ∑ ()

 ()

Backward induction:

Set and
 () ()

Set

 ()

{ () ∑ ()
 ()

}

 ()

{ ()}

Hence
 () is easily determined for from Table 2. A summary for is given in Table 4.

Table 4: Optimality equation solutions for t = 5

 ()

0 5 2

1 10 0

2 16 0

Set

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

MATH4406 HW3 Joshua Song

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

A summary for is given Table 5.

Table 5: Summary for t = 4

 ()

 ()

0 5 9 14 14 2

1 16.25 17 X 17 1

2 25 X X 25 0

Set

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

MATH4406 HW3 Joshua Song

Table 6: Summary for t = 3

 ()

 ()

0 14 16.75 22.5 22.5 2

1 24.75 25.5 X 25.5 1

2 33.5 X X 33.5 0

Set

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

Table 7: Summary for t = 2

 ()

 ()

0 22.5 29.25 31 31 2

1 33.25 34 X 34 1

2 42 X X 42 0

MATH4406 HW3 Joshua Song

Set

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

 () () ()

 () ()
 () ()

 ()

 ()

Table 8: Summary for t = 1

 ()

 ()

0 31 33.75 39.5 39.5 2

1 41.75 42.5 X 42.5 1

2 50.5 X X 50.5 0

Since , stop.

The optimal policy and expected total rewards are shown in Table 9. Due to the high reward of

selling inventory, the optimal policy appears to be order as many units as possible, except in the final

turn.

Table 9: Optimal policy and expected total reward function

 ()

 ()
 ()

 ()
 ()

 ()

0 2 2 2 2 2 39.5

1 1 1 1 1 0 42.5

2 0 0 0 0 0 50.5

MATH4406 HW3 Joshua Song

Problem 2: Threshold policy in inventory control

The backward induction algorithm for an inventory control problem was implemented in C++. The

source code is supplied in Appendix A. The output of this program is the decision rule at each time

step, for example, the output for trial 10 is shown in Table 10. The parameters used for each trial is

shown in Table 11, where N is the time horizon, M is the warehouse capacity, f is the profit per unit

sold, c is the ordering cost per unit, K is the base ordering cost, h is the holding cost per unit, and g is

the terminal value per unit. is the probability for selling 0, 1, 2, … units at a time step.

Table 10: Software output for trial 10

s d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0

4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 11: Trial parameters

Trial N M f c K h g

1 15 2 16 3 5 2 0 0.25, 0.25, 0.5

2 15 5 30 5 10 5 0 0.2, 0.2. 0.2, 0.2, 0.1, 0.1

3 15 5 30 2 30 5 0 0.2, 0.2. 0.2, 0.2, 0.1, 0.1

4 15 5 40 5 50 5 0 0.2, 0.2. 0.2, 0.2, 0.1, 0.1

5 15 5 20 1 15 5 0 0.2, 0.2. 0.2, 0.2, 0.1, 0.1

6 15 10 30 5 20 5 0 All 1/11

7 15 5 8 2 4 1 0 0.1, 0.2, 0.3, 0.4, 0.2, 0.1

8 15 5 8 2 4 1 5 0.1, 0.2, 0.3, 0.4, 0.2, 0.2

9 15 7 8 2 4 1 0 All 1/8

10 15 7 8 2 4 1 0 0.2, 0, 0, 0, 0.4, 0, 0, 0.4

A threshold () policy is one where if the inventory drops below units, order a sufficient number

of units to raise the inventory to units. It is obvious from Table 10 that . This may not

be optimal at the last few time steps, where the behaviour depends on the terminal value. The

and values for each trial is summarised in Table 12.

MATH4406 HW3 Joshua Song

Table 12: values for each trial

Trial

1 2 2

2 3 4

3 2 5

4 2 5

5 2 4

6 5 9

7 3 5

8 3 5

9 4 7

10 5 7

If the ordering cost is not linear with respect to the number of units ordered, the threshold policy

may not be the optimal policy. For example, replacing the ordering cost function with

 () { } results in a non-threshold policy. The policy from using the same

parameters as in trial 9 but with the new ordering cost function is shown in Table 13. New stock is

ordered when the inventory drops below 4, but the maximum number of units ordered at once is 2.

Table 13: Decision rules for non-linear ordering cost function

s d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0

1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0

2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MATH4406 HW3 Joshua Song

Problem 3: Optimal Markov Deterministic Policies

Theorem: An optimal deterministic Markovian policy exists when the state space is finite or

countable and the action space is finite for each .

Proof:

Let
 be the solution to the optimality equation,

 ()

{ () ∑ ()
 ()

}

Since
 ()

 () () then
 ()

 (). Then by the induction

hypothesis
 () depends on only through , i.e.

 ()

{ () ∑ ()
 ()

}
 ()

Since is finite, there exists an action such that

 (
) ∑ (

)
 ()

{ () ∑ ()
 ()

}

Since is finite
 exists for and hence a decision rule

 also exists. Therefore an

optimal deterministic Markovian policy (

) exists.

MATH4406 HW3 Joshua Song

Problem 4: The Secretary Problem

Part 1

The figures were plotted in Matlab and are shown in Figure 1 and Figure 2. Source code can be

found in Appendix B.

Figure 1: Proportion of candidates to interview before selection vs. number of candidates

Figure 2: Probability of choosing the best candidate using optimal rule vs. number of candidates

MATH4406 HW3 Joshua Song

Part 2

 [

 ()

 ()

] ∫

 ()

∫

 ()
 [] ()

 () (

 ()
)

So for large , (

 ()
)

 ()

 For large , ()

This rule means that the first candidates should always be rejected where is the total

number of candidates. The first candidate who is better than those interviewed before should then

be accepted. Possible uses for this rule of thumb in life include choosing a parking spot, a

wife/husband, a gas station, and when to buy or sell a car. A restriction with this rule is that the

number of options must be known. In real life applications, there may be a cost involved in

searching. Furthermore, there is sometimes the option of going back and accepting an option that

was previously rejected, which would change the dynamic of the problem.

Part 3

A modification of the secretary problem is rather than aiming to pick the best candidate, the goal is

to pick the second best candidate. This modified problem is called the postdoc variant of the

secretary problem by Vanderbei (n.d.), as the motivating story is that when trying to hire a postdoc,

the best candidate will accept an offer from Harvard. The probability of success is
 ()

 ()
 where

 ⌊

⌋. As goes to infinity, this probability tends to 1/4, which is less than the limit for the

classical secretary problem. This illustrates the fact that it is easier to pick the best candidate rather

than the second best.

MATH4406 HW3 Joshua Song

Appendix A: C++ Code for Problem 2

main.cpp

#include <vector>
#include <map>
#include <string>
#include <iostream>
#include <fstream>

std::string filename = "output10.csv";

std::map<int, double> p; // number of units -> probability of selling that number
std::map<int, std::vector<double>> uStar; // time -> solution to optimality equation
std::map<int, std::vector<int>> aStar; // time -> best action

int N = 15; // Number of time steps
int M = 7; // Maximum warehouse capacity

double profitPerUnit = 8;
double orderCostPerUnit = 2;
double orderCostBase = 4;
double holdCostPerUnit = 1;
double terminalValuePerUnit = 0;

// Present value of revenue for u units
double f(int u) {
 return profitPerUnit * u;
}

// Probability of supply exceeding demand u
double q(int u) {
 double sum = 0;
 std::map<int, double>::iterator it;
 for (it = p.begin(); it != p.end(); it++) {
 if (it->first >= u) {
 sum += it->second;
 }
 }
 return sum;
}

// Returns cost for ordering u units
double O(int u) {
 if (u > 0) {
 return orderCostBase + orderCostPerUnit * u;
 }
 return 0;
}

// Returns holding/maintenance cost for u units
double h(int u) {
 return holdCostPerUnit * u;
}

double F(int u) {
 double sum = 0;
 for (int j = 0; j <= u - 1; j++) {
 if (p.find(j) != p.end()) {
 sum += f(j) * p[j];
 }

MATH4406 HW3 Joshua Song

 }
 return sum + f(u) * q(u);
}

// Reward function for state s, action a
double r(int s, int a) {
 return F(s + a) - O(a) - h(s + a);
}

// Terminal value of number of units u
double g(int u) {
 return terminalValuePerUnit * u;
}

// Transition probability function
double tranProb(int j, int s, int a) {
 std::map<int, double>::iterator it;
 if (j > s + a || s + a > M) {
 return 0;
 } else if (j > 0) {
 it = p.find(s + a - j);
 if (it != p.end()) {
 return it->second;
 } else {
 return 0;
 }
 } else {
 return q(s + a);
 }
}

void step(int t) {
 uStar[t] = std::vector<double>();
 aStar[t] = std::vector<int>();
 for (int s = 0; s <= M; s++) {
 double bestReward = -999999;
 int bestAction;
 for (int a = 0; a <= M - s; a++) {
 double reward = r(s, a);
 for (int j = 0; j <= M; j++) {
 reward += tranProb(j, s, a) * uStar[t + 1][j];
 }
 if (bestReward < reward) {
 bestReward = reward;
 bestAction = a;
 }
 }
 uStar[t].push_back(bestReward);
 aStar[t].push_back(bestAction);
 }
}

int main() {

 // Populate selling probabilities
 p[0] = 0.2;
 p[1] = 0;
 p[2] = 0;
 p[3] = 0;
 p[4] = 0.4;
 p[5] = 0;
 p[6] = 0;

MATH4406 HW3 Joshua Song

 p[7] = 0.4;

 // Populate uStar and aStar for t = N + 1 (i.e. populate with terminal rewards)
 int t = N + 1;
 uStar[t] = std::vector<double>();
 for (int s = 0; s <= M; s++) {
 uStar[t].push_back(g(s));
 }
 t--;

 // Loop until t == 1
 while (t >= 1) {
 step(t);
 t--;
 }

 // Output results in csv format
 std::ofstream output;
 output.open (filename);
 output << "s";
 for (int t = 1; t <= N; t++) {
 output << ",d" << t;
 }
 output << ",v";
 for (int s = 0; s <= M; s++) {
 output << "\n" << s;
 for (int t = 1; t <= N; t++) {
 output << "," << aStar[t][s];
 }
 output << "," << uStar[1][s];
 }
 return 0;
}

MATH4406 HW3 Joshua Song

Appendix B: Matlab Code for Problem 4

calculateTau.m

function tau = calculateTau(N)
%CALCULATETAU Calculates tau given N
if N <= 2
 tau = 1;
else

 for t = 1:(N - 1)
 sum = 0;
 for x = t:(N - 1)
 sum = sum + 1/x;
 end
 if (sum < 1)
 break
 end
 end
 tau = t - 1;
end

calculateProb.m

function probability = calculateProb(N)
%CALCULATEPROB Probability of choosing best using optimal rule
if (N == 1)
 probability = 1;
else
 sum = 0;
 tau = calculateTau(N);
 for x = tau:(N - 1)
 sum = sum + (1 / x);
 end
 probability = sum * tau / N;
end
end

graph.m

maxN = 50;
proportions = zeros(1, maxN);
probabilities = zeros(1, maxN);
N = 1:maxN;
for x = 1:maxN
 proportions(x) = calculateTau(x)/x;
 probabilities(x) = calculateProb(x);
end
figure();
plot(N, proportions,'- .');
figure();
plot(N, probabilities,'- .');

MATH4406 HW3 Joshua Song

References

Vanderbei, RJ n.d. The Postdoc Variant of the Secretary Problem, viewed 8 September 2014,

<http://www.princeton.edu/~rvdb/tex/PostdocProblem/PostdocProb.pdf>.

Puterman, ML 2005, Markov Decision Processes, John Wiley & Sons, Inc., Hoboken.

