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Problem 1: Inventory Control 
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This gives the state and action space as: 
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The expected revenue is ( )  ∑  ( )    ( )  
   
    . The calculated values are shown in Table 1 
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The expected reward is calculated from  (   )   (   )   ( )   (   ) as follows: 
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This is summarised in Table 2. 

 

Table 2: Expected rewards  
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The transition probabilities are shown in Table 3. 

Table 3: Transition function 
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Backward induction: 
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Hence   
 ( ) is easily determined for         from Table 2. A summary for     is given in Table 4. 

 

Table 4: Optimality equation solutions for t = 5 
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A summary for     is given Table 5. 

 

Table 5: Summary for t = 4 
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0 5 9 14 14 2 
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2 25 X X 25 0 
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Table 6: Summary for t = 3 
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Table 7: Summary for t = 2 
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0 22.5 29.25 31 31 2 

1 33.25 34 X 34 1 

2 42 X X 42 0 
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Table 8: Summary for t = 1 

   
 (   )   

                
 ( )     

   

0 31 33.75 39.5 39.5 2 

1 41.75 42.5 X 42.5 1 

2 50.5 X X 50.5 0 

 

Since    , stop. 

The optimal policy and expected total rewards are shown in Table 9. Due to the high reward of 

selling inventory, the optimal policy appears to be order as many units as possible, except in the final 

turn. 

 

Table 9: Optimal policy and expected total reward function 
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0 2 2 2 2 2 39.5 

1 1 1 1 1 0 42.5 

2 0 0 0 0 0 50.5 
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Problem 2: Threshold policy in inventory control 

 

The backward induction algorithm for an inventory control problem was implemented in C++. The 

source code is supplied in Appendix A. The output of this program is the decision rule at each time 

step, for example, the output for trial 10 is shown in Table 10. The parameters used for each trial is 

shown in Table 11, where N is the time horizon, M is the warehouse capacity, f is the profit per unit 

sold, c is the ordering cost per unit, K is the base ordering cost, h is the holding cost per unit, and g is 

the terminal value per unit.    is the probability for selling 0, 1, 2, … units at a time step.  

 

Table 10: Software output for trial 10 

s d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 

0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 

4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 11: Trial parameters 

Trial N M f c K h g    

1 15 2 16 3 5 2 0 0.25, 0.25, 0.5 

2 15 5 30 5 10 5 0 0.2, 0.2. 0.2, 0.2, 0.1, 0.1 

3 15 5 30 2 30 5 0 0.2, 0.2. 0.2, 0.2, 0.1, 0.1 

4 15 5 40 5 50 5 0 0.2, 0.2. 0.2, 0.2, 0.1, 0.1 

5 15 5 20 1 15 5 0 0.2, 0.2. 0.2, 0.2, 0.1, 0.1 

6 15 10 30 5 20 5 0 All 1/11 

7 15 5 8 2 4 1 0 0.1, 0.2, 0.3, 0.4, 0.2, 0.1 

8 15 5 8 2 4 1 5 0.1, 0.2, 0.3, 0.4, 0.2, 0.2 

9 15 7 8 2 4 1 0 All 1/8 

10 15 7 8 2 4 1 0 0.2, 0, 0, 0, 0.4, 0, 0, 0.4 

 

A threshold (   ) policy is one where if the inventory drops below   units, order a sufficient number 

of units to raise the inventory to   units. It is obvious from Table 10 that        . This may not 

be optimal at the last few time steps, where the behaviour depends on the terminal value. The   

and   values for each trial is summarised in Table 12. 
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Table 12:         values for each trial 

Trial     

1 2 2 

2 3 4 

3 2 5 

4 2 5 

5 2 4 

6 5 9 

7 3 5 

8 3 5 

9 4 7 

10 5 7 

 

If the ordering cost is not linear with respect to the number of units ordered, the threshold policy 

may not be the optimal policy. For example, replacing the ordering cost function with  

 ( )       {   }  results in a non-threshold policy. The policy from using the same 

parameters as in trial 9 but with the new ordering cost function is shown in Table 13. New stock is 

ordered when the inventory drops below 4, but the maximum number of units ordered at once is 2. 

 

Table 13: Decision rules for non-linear ordering cost function 

s d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 

0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 

1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 

2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 

3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Problem 3: Optimal Markov Deterministic Policies 

 

Theorem: An optimal deterministic Markovian policy exists  when the state space   is finite or 

countable and the action space    is finite for each    .  

 

Proof: 
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Since   is finite   
  exists for        and hence a decision rule   

  also exists. Therefore an 

optimal deterministic Markovian policy    (  
    

        
 )      exists. 
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Problem 4: The Secretary Problem 

Part 1 

The figures were plotted in Matlab and are shown in Figure 1 and Figure 2. Source code can be 

found in Appendix B. 

 

Figure 1: Proportion of candidates to interview before selection vs. number of candidates 

 

 

 

Figure 2: Probability of choosing the best candidate using optimal rule vs. number of candidates 
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Part 2 
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This rule means that the first      candidates should always be rejected where   is the total 

number of candidates. The first candidate who is better than those interviewed before should then 

be accepted. Possible uses for this rule of thumb in life include choosing a parking spot, a 

wife/husband, a gas station, and when to buy or sell a car. A restriction with this rule is that the 

number of options must be known. In real life applications, there may be a cost involved in 

searching. Furthermore, there is sometimes the option of going back and accepting an option that 

was previously rejected, which would change the dynamic of the problem. 

 

Part 3 

A modification of the secretary problem is rather than aiming to pick the best candidate, the goal is 

to pick the second best candidate. This modified problem is called the postdoc variant of the 

secretary problem by Vanderbei  (n.d.), as the motivating story is that when trying to hire a postdoc, 

the best candidate will accept an offer from Harvard. The probability of success is 
  (    )

 (   )
 where 

   ⌊
 

 
⌋. As   goes to infinity, this probability tends to 1/4, which is less than the     limit for the 

classical secretary problem. This illustrates the fact that it is easier to pick the best candidate rather 

than the second best.  



MATH4406 HW3 Joshua Song  

Appendix A: C++ Code for Problem 2 

 

main.cpp 

#include <vector> 
#include <map> 
#include <string> 
#include <iostream> 
#include <fstream> 
 
std::string filename = "output10.csv"; 
 
std::map<int, double> p; // number of units -> probability of selling that number 
std::map<int, std::vector<double>> uStar; // time -> solution to optimality equation 
std::map<int, std::vector<int>> aStar;  // time -> best action 
 
int N = 15;   // Number of time steps 
int M = 7;   // Maximum warehouse capacity 
 
double profitPerUnit = 8; 
double orderCostPerUnit = 2; 
double orderCostBase = 4; 
double holdCostPerUnit = 1; 
double terminalValuePerUnit = 0; 
 
// Present value of revenue for u units 
double f(int u) { 
 return profitPerUnit * u; 
} 
 
// Probability of supply exceeding demand u 
double q(int u) { 
 double sum = 0; 
 std::map<int, double>::iterator it; 
 for (it = p.begin(); it != p.end(); it++) { 
  if (it->first >= u) { 
   sum += it->second; 
  } 
 } 
 return sum; 
} 
 
// Returns cost for ordering u units 
double O(int u) { 
 if (u > 0) { 
  return orderCostBase + orderCostPerUnit * u; 
 } 
 return 0; 
} 
 
// Returns holding/maintenance cost for u units 
double h(int u) { 
 return holdCostPerUnit * u; 
} 
 
double F(int u) { 
 double sum = 0; 
 for (int j = 0; j <= u - 1; j++) { 
  if (p.find(j) != p.end()) { 
   sum += f(j) * p[j]; 
  } 
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 } 
 return sum + f(u) * q(u); 
} 
 
// Reward function for state s, action a 
double r(int s, int a) { 
 return F(s + a) - O(a) - h(s + a); 
} 
 
// Terminal value of number of units u 
double g(int u) { 
 return terminalValuePerUnit * u; 
} 
 
// Transition probability function 
double tranProb(int j, int s, int a) { 
 std::map<int, double>::iterator it; 
 if (j > s + a || s + a > M) { 
  return 0; 
 } else if (j > 0) { 
  it = p.find(s + a - j); 
  if (it != p.end()) { 
   return it->second; 
  } else { 
   return 0; 
  } 
 } else { 
  return q(s + a); 
 } 
} 
 
void step(int t) { 
 uStar[t] = std::vector<double>(); 
 aStar[t] = std::vector<int>(); 
 for (int s = 0; s <= M; s++) { 
  double bestReward = -999999; 
  int bestAction; 
  for (int a = 0; a <= M - s; a++) { 
   double reward = r(s, a); 
   for (int j = 0; j <= M; j++) { 
    reward += tranProb(j, s, a) * uStar[t + 1][j]; 
   } 
   if (bestReward < reward) { 
    bestReward = reward; 
    bestAction = a; 
   } 
  } 
  uStar[t].push_back(bestReward); 
  aStar[t].push_back(bestAction); 
 } 
} 
 
int main() { 
 
 // Populate selling probabilities 
 p[0] = 0.2; 
 p[1] = 0; 
 p[2] = 0; 
 p[3] = 0; 
 p[4] = 0.4; 
 p[5] = 0; 
 p[6] = 0; 
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 p[7] = 0.4; 
 
 // Populate uStar and aStar for t = N + 1 (i.e. populate with terminal rewards) 
 int t = N + 1; 
 uStar[t] = std::vector<double>(); 
 for (int s = 0; s <= M; s++) { 
  uStar[t].push_back(g(s)); 
 } 
 t--; 
 
 // Loop until t == 1 
 while (t >= 1) { 
  step(t); 
  t--; 
 } 
 
 // Output results in csv format 
 std::ofstream output; 
 output.open (filename); 
 output << "s"; 
 for (int t = 1; t <= N; t++) { 
  output << ",d" << t; 
 } 
 output << ",v"; 
 for (int s = 0; s <= M; s++) { 
  output << "\n" << s; 
  for (int t = 1; t <= N; t++) { 
   output << "," << aStar[t][s]; 
  } 
  output << "," << uStar[1][s]; 
 } 
 return 0; 
} 
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Appendix B: Matlab Code for Problem 4 

calculateTau.m 

function tau = calculateTau( N ) 
%CALCULATETAU Calculates tau given N 
if N <= 2 
    tau = 1; 
else 

     
    for t = 1:(N - 1) 
        sum = 0; 
        for x = t:(N - 1) 
            sum = sum + 1/x; 
        end 
        if (sum < 1)  
            break 
        end 
    end 
    tau = t - 1; 
end 

  

calculateProb.m 

function probability = calculateProb( N ) 
%CALCULATEPROB Probability of choosing best using optimal rule 
if (N == 1) 
    probability = 1; 
else 
    sum = 0; 
    tau = calculateTau(N); 
    for x = tau:(N - 1) 
        sum = sum + (1 / x); 
    end 
    probability = sum * tau / N; 
end 
end 

  

 

graph.m 

maxN = 50; 
proportions = zeros(1, maxN); 
probabilities = zeros(1, maxN); 
N = 1:maxN; 
for x = 1:maxN 
    proportions(x) = calculateTau(x)/x; 
    probabilities(x) = calculateProb(x); 
end 
figure(); 
plot(N, proportions,'- .'); 
figure(); 
plot(N, probabilities,'- .'); 
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