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Abstract

There are a wide range of problems which involve making decisions over time in the face
of uncertainty. Control theory draws from the fields of Engineering, Operations research
and Mathematics to supply tools to regulate or optimise a system. I will briefly introduce
and discuss some relevant topics considered as part of control theory. Phenomena can be
modelled as dynamical systems, where there is some level of control that can be imposed
on the system. This includes process control, optimal stopping, automated planning and
general strategic decision making in the face of uncertainty.
In these problems there exists some optimal behaviour or optimal policy that is desired.

Markov Decision Problems

An important class of characterising problems are Markov decision problems, which are
equivalently known as Markov decision processes (MDPs). Essentially most real-life stochas-
tic control problems can be posed as an MDP. This class of problems is backed by an elegant
theoretical framework and is underpinned by Bellman’s optimality equation (1), which can
be used to solve Markov decision processes.

Problem Definition

To solve a control application it is important to have well-defined problems. In this regard,
the concept of states in a state space is important, where the state space is the set of all
states that could be visited. For example, imagine a character in a computer game, here the
state of the system could be described in terms of the character’s health and stat modifiers.
We could also define the set of actions a character can perform and like in most good games
we could introduce some uncertainty into the system (perhaps random enemy spawning).
Then we could begin to investigate interesting objectives such as maximising the expected
time a character stays alive in a game or maximize the expected score and translate these
to strategies which lead to best outcomes.
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Finite Horizon problems

Problems where the process terminates within a finite number of epochs are referred to as
finite horizon problems. And it is useful to reinforce notions of a state space (which is the
set of all states which are used to describe the system), an action space, which is the set
of actions we can impose on the system, along with the outcome space which exist in the
state space, it details the set of possible outcomes which are generally but not exclusively
stochastic realisations.

We typically assume we can construct a transition matrix to describe the dynamic evolution
of the system as well for mathematical convenience the state and action space are also
assumed to be finite (although this is not necessarily the case).

If we have a finite horizon problem and satisfy these assumptions, we can apply Bellman’s
equation to solve MDPs. This is typically done by computing the value of all state-action
pairs in a recursive manner, one possibility is using backwards value iteration solving Bell-
mans equation 1.0 for each possible state st ∈ S, maximising over all actions a ∈ AS and all
outcomes s′ ∈ S.

Vt(st) = max
a∈AS

(Ct(st, a) + γ
∑
s′∈S

P (s′|st, a)Vt+1(s
′)) (1)

Threshold policies

It is important to consider the structure of an MDP and there are some problems that nat-
urally lend themselves to threshold polices. For instance for a stock replacement problem,
where if at anytime the stock falls below a threshold level of stock σ, then we want to order
a suitable amount of stock to reach Σ units. A decision rule may be expressed as:

dt(s) =


Σ− s s < σ

0 s ≥ σ

Where s is our current level of stock.

It is fairly obvious that if there exists a threshold (σ,Σ) optimal policy then there can be
significant computational advantages. Furthermore, this can be translated to a simple rule
of thumb, which is to aim for a target stock Σ and try to keep a minimum fill Σ− σ. This
translates well for basic implemention and managerial purposes.
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Infinite Horizon problems

Decisions in MDPs affect the states that will be visited later down the track and in turn will
influence the future expected rewards. So the optimal choice of actions needs to consider
future downstream impacts, which can expand many time periods into the future.

Infinite horizon problems are posed to investigate limiting behaviour (steady-state prob-
lems without the time dimension) to obtain insights into the properties of problems and
algorithms. Unlike finite horizon problems which can be solved exactly using backward re-
cursion because there exists some finite terminal condition, in the infinite setting applying
value iteration would lead to costs tending to infinity.

This is worked around by considering the discounting cost model (which shrinks/contracts)
per time period cost as T → ∞ or alternatively we can use the average reward approach
which divides total reward/cost by the number of stages, so that costs do not diverge to
infinity. So to solve these problems we need to look at formulating the problem as either a
Discounted MDP or Average Reward MDP.

Discounted MDP

In various applications a popular assumption (especially in finance) is to favour direct re-
wards over future uncertain rewards and so a parameter γ ∈ [0, 1) can be introduced as a
discounting factor. Where γ has an important role in rate of convergence of value and pol-
icy iteration algorithms along with allowing solution methology for infinite horizon problems.

Average Reward MDP

Previously we have assumed the objective function maximizes the reward or contribution
per time period or epoch. But in some particular applications we might rather be interested
in maximising the average reward per time period. That is we can analyse behaviour by
observing what happens when T time periods becomes very large (approaches ∞).

Linear Programming approach for MDP An alternative method to find the optimal
value function is by solving a linear programming problem such as follows.

min
v

∑
s∈S

αsv(s)

st. v(s) ≥ C(s, a) + γ
∑
s′∈S

P (s′|s, a)v(s′) ∀s, ∀a

The advantage of the LP method over value iteration methods is that it avoids the need for
iterative learning with the geometric convergence exhibited by value iteration. [4]
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But the issue is the LP will have |S| × |A| inequality contraints and a |S|-dimensional de-
cision vector, which can be unwieldy due to the tendency for the state space to be very large.

Partially Observable Markov Decision Processes (POMDPs)

There are many applications where we are not able to observe (or measure) the state of a
system precisely. In these cases we may be able to model the application as a POMDP,
which can be used to model a wide variety of interesting problems. Examples include robot
navigation problems and automated planning (e.g. Google’s self-driving car project). These
problems are referred to as partially observable Markov decision processes, because the
underlying state can not be directly observable and so we need to consider a probability
distribution over the set of possible states based on a set of observations and observation
probabilities.

Here an optimal solution will specify the optimal action for each possible belief over the
state space. Unfortunately this comes at a cost, as finite horizon POMDPs are found to be
PSPACE-hard as discussed in [2]. So these problems are largely intractable for all but the
smallest of cases.

Model Predictive Control

There exists a class of control algorithms known as Model predictive control (MPC) alter-
natively known as ‘receding horizon control’ that takes advantage of an explicitly defined
process model to predict how a plant responds in the future. Terminology such as process
model and plant are abundant in MPC because it was initially developed for controlling
power plant and petroleum refineries processes. [3]

Figure 1: Generic block diagram of control system

The basic idea is that at each decision epoch, MPC algorithm computes a sequence of future
‘manipulated variable adjustments’ so to optimize future plant behaviour. Which is resolved
at every subsequent control epoch. MPC is a computationally cheap algorithm that can deal
with small unexpected disturbances although it is not quaranteed to find optimal policies.[3]
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Concluding remarks

Control theory is born from a diverse range of fields which have contributed methods to
the application of solving real-life problems. Although each field has different problems and
different solution approaches, they all have a common theme of making sure a problem is
well-defined and there exists some notion of an optimal sequence of actions to apply to the
problem. To give some perspective of the scope of the field, we primarily looked at the
dynamic programming side of control theory and even then we only scratched the surface of
the topic.

∼

The world is very much unpredictable, despite our best efforts we are yet unable to control
a hurricane. But we can find some solace in the fact, while we can’t control it, we can still
take steps to limit the damage.
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