
MATH4406 – HW1

Madeleine Nargar, 41214538

Exercise 1

a) ∅ ∈ F

b) A ∈ F ⇒ Ac ∈ F

c) A1, A2, · · · ∈ F ⇒
⋃
iAi ∈ F

1. Ω = ∅c
(a) + (b) ⇒ ∅c ∈ F

⇒ Ω ∈ F

2. By (b), if Ai ∈ F then Aci ∈ F . By (c), Ac1, A
c
2, · · · ∈ F gives

⋃
iA

c
i ∈ F

By De Morgan’s Law,
⋃
iA

c
i =

⋂
iAi ∈ F

Exercise 2

1.

1 = P(Ω)

= P(A ∪Ac)
= P(A) + P(Ac) (by sum rule)

P(Ac) = 1− P(A)

2. ∅ = Ωc. Using the result above (Ex 2.1), P(∅) = 1− P(Ω) = 1− 1 = 0.

3. Expressing A, B and A ∪ B as a union of disjoint subsets:
P(A) = P(A ∩B) + P(A ∩Bc) (1)
P(B) = P(B ∩A) + P(B ∩Ac) (2)
P(A ∪B) = P(A ∩B) + P(A ∩Bc) + P(Ac ∩B)
Substituting (1) and (2) gives,
P(A ∪B) = P(A) + P(B)− P(A ∩B)
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Exercise 4

A and B are independent if P(A ∩B) = P(A)P(B). So for independent A and B,

P(A|B) =
P(A ∩B)

P(B)

=
P(A)P(B)

P(B)

= P(A)

Similarly, P(A) = P(A|B)

=
P(A ∩B)

P(B)

⇒ P(A ∩B) = P(A)P(B) i.e. A, B independent

Exercise 5

P(6|even) =
P(6 ∩ even)

P(even)

=
P(6)

P(even)

=
1/6

1/2

= 1/3

Exercise 6

1. This follows directly from the definition of conditional probability, P(A|B) = P(A∩B)
P(B)

2. For B1, B2, . . . forming a partition of the sample space, A∩Bi are disjoint for all i 6= j
so we can use the sum rule, giving: P(A) =

∑
i P(A∩Bi). Applying the product rule

proved above, P(A) =
∑

i P(A ∩Bi) =
∑

i P(A|Bi)P(Bi).
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3.

P(Bi|A) =
P(A ∩Bi)

P(A)

=
P(A|Bi)P(Bi)

P(A)
(using product rule)

=
P(A|Bi)P(Bi)∑
j P(A|Bj)P(Bj)

(apply law of total probability to A)

Exercise 7

Thinking about a comparable problem makes the solution more intuitive. Imagine that
instead of three boxes there are a thousand, with only one containing a prize. After you
pick a box the host opens all but one of the other boxes. In this case the choice to switch
seems obvious, as you’re gambling on whether the prize was more likely to be in your
original box (a one in a thousand chance), or in any of the other 999 boxes. Given the host
will never open the box that actually has the prize in it, they have effectively ”combined”
999 one-in-a-thousand chances (of the prize being in one of the boxes you didn’t pick) into
a single box. So it should be an obvious decision to switch from your original box (1/1000
chance of winning) to the one other unopened box (999/1000 chance of winning).

Exercise 8

1. FX(x) = P(X ≤ x) = P(X ∈ (−∞, x])
limx→∞ FX(x) = P(X ∈ ∅) = P(∅) = 0

2. FX(x) = P(X ≤ x) = P(X ∈ (−∞, x])
limx→∞ FX(x) = P(X ∈ (−∞,∞)) = P(Ω) = 1

3. FX(x) is non-decreasing if for all a < b, FX(a) ≤ FX(b).

FX(b) = P(X ≤ b)
= P(X ≤ a) + P(a < X ≤ b) (by sum rule)

= FX(a) + P(a < X ≤ b)
⇒ FX(b) ≥ FX(a) (as P(x) ≥ 0 ∀x)
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Exercise 9, 10

Heights of the bars in the PMF plot gives the size of the jumps between points in the
CDF.
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Exercise 11

Using the probabilities from above:
x ≤ 1 2 3 4 5 6 7 8 9 10 11 12 > 12

pX(x) 0 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 0

E[X] =
∑
k

kpX(k)

= 2
1

36
+ 3

2

36
+ 4

3

36
+ 5

4

36
+ 6

5

36
+ 7

6

36
+ 8

5

36
+ 9

4

36
+ 10

3

36
+ 11

2

36
+ 12

1

36
= 7

Exercise 12

∞∑
k=0

F̄k(k) =
∞∑
k=0

P(X > k)

=

∞∑
k=1

P(X ≥ k)

=

∞∑
k=1

∞∑
i=k

pX(i)

=
∞∑
i=1

i∑
k=1

pX(i)

=
∞∑
i=1

ipX(i)

=
∞∑

i=−∞
ipX(i) as non-negative, pX(i) = 0 ∀i < 0

= E[X]

Exercise 13

Using E[h(X)] =
∑

k h(k)pX(k)

1. Setting h(x) = cX,
E[cX] =

∑
k ckpX(k) = c

∑
k kpX(k) = cE[X]
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2.

Set Z(ω) = X(ω) + Y (ω). Let an event Ak = {ω ∈ Ω : X(ω) = x, Y (ω) = y, Z(ω) = z = x+ y}

E[X + Y ] = E[Z] =
∑
z

zP(Z(ω) = z : X(ω) ∈ A, Y (ω ∈ B))

=
∑
z

(X + Y )P(Z(ω) = z : X(ω) = x, Y (ω = y))

=
∑
x

XP(X(ω) = x) +
∑
y

Y P(Y (ω) = y)

= E[X] + E[Y ]

Exercise 14

V ar(X) = E((X − E(X))2)

E(aX + b) = aE(X) + b (by ex 13.1, 13.2, with E(c) = c)

V ar(aX + b) = E((aX + b− (aE(X) + b))2)

= E(a2(X − E(X))2)

= a2E((X − E(X))2)

= a2Var(X)

Exercise 15

For non-negative Z, E(Z) is non-negative (as P(A) ≥ 0 for any A).
So V ar(X) = E((X − EX)2) =

∑
k(X − EX)2 pX(k) can only be zero if X(k) = EX for

all k (otherwise we’d need pX(k) = 0 for all k, violating pX(Ω) = 1). This implies X is a
constant, which we will call k0
Using k0 = X = EX =

∑
k∈{k0} k0 pX(k) = k0 pX(k0)

⇒ pX(k0) = 1

Exercise 16

For the binary sequences Bn(ω) = (b1, b2, . . . , bn) with bi ∈ {0, 1}, bi = I{bi = 1}. So
setting X as the number of successes in B, X(ω) =

∑n
i=1 I{bi = 1}. bi are indepen-

dent events, each with P({bi = 1}) = p. For a particular sequence Bn(ω) consisting of
{bi = 1} for a particular k of the events, with {bi = 0} for the remaining (n − k) events,
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P({Bn(ω)}) = P(b1)P(b2) . . .P(bn) = pk(1− p)n−k
P(X(ω) = k) =

∑
A P(Bn(ω)) with A = {Bn(ω) : bi = 1 for k of i ∈ (0, n)}

=
∑

A p
k(1− p)n−k

=
(
n
k

)
pk(1− p)n−k as |A| =

(
n
k

)
Exercise 17

According to the binomial theorem, (a+ b)n =
∑n

i=0

(
n
i

)
pi(1− p)n−i.

Setting a = p, b = 1− p,∑n
i=0 P(X = i) =

∑n
k=0

(
n
i

)
pi(1− p)n−i = (p+ (1− p))n = 1n = 1.

Exercise 18

1.

E(X) =
∞∑

k=−∞
kP(X = k)

=
n∑
k=0

k

(
n

k

)
pk(1− p)n−k

=
n∑
k=1

k
n!

k!(n− k)!
pk(1− p)n−k (first term zero)

=
n∑
k=1

np
(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k

=
n−1∑
k′=0

np
(n− 1)!

k′!(n− 1− k′)!
pk

′
(1− p)(n−1)−k′ (replacing k with k’=k-1, then n-k=n-1-k’)

= np
n−1∑
k′=0

(
n− 1

k′

)
pk

′
(1− p)(n−1)−k′

= np(p− (1− p)n−1 (as above, using binomial theorem with a=p, b=1-p)

= np

2. If X is the number of successes ({xi = 1}) in n Bernoulli trials, then Z = n −X =
number of failures ({xi = 0} ≡ {zi = 1}) in n Bernoulli trials. We can think of Z as
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binomially distributed with P(zi = 1) = P(xi = 0) = 1− p.
⇒ P(Z = k) =

(
n
k

)
(1− p)kpn−k

Exercise 19

This is binomially distributed with X = # of correct answers, n = 20, p = 0.25.

P(X ≥ 10) =
20∑

k=10

P(X = k)

=

20∑
k=10

(
20

k

)
0.25k0.7520−k

= 0.013864 looks like passing by guessing is much harder than I thought!

Exercise 20

For the event X = k (that the kth Bernoulli trial is the first success) to occur there must
be k-1 failures followed by one success. For independent trials bi, each with probability of
success p:

P(X = k) = P({b1 = 0})P({b1 = 0}) . . .P({bk−1 = 0})P({bk = 1}) = (1− p)k−1p,
for k = 1, 2, . . .

∞∑
k=1

P(X = k) =
∞∑
k=1

(1− p)k−1p

=
∞∑
k′=0

(1− p)k′p

=
p

1− (1− p)
(infinite geometric series, a = p, r = 1− p, |r| < 1,converges to

a

1− r
)

= 1
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Exercise 21

Here we want 20 successes (no flat tire) in 20 trials. Assuming the chances of a flat tire
on consecutive rides are independent (presumably they aren’t really...), we have X=#
successes in 20 trials, p=0.99, k=20, n=20. P(X = 20) =

(
20
20

)
0.99200.010 = 0.8179. I used

binomial distribution for number of puncture-free rides, but would be same using geometric
distribution for number of rides taken without a ”success” (with success = flat tire with
probability 0.01).

Exercise 22

If X is the number of trials until a success, then Y = X - 1 is the number of failures until
a success. So based on the distribution and support of X:

P(Y = k) = P(X = k + 1) = (1− p)kp, k = 0, 1, . . .

Exercise 23

Let Bi
k = (b1, b2 . . . , bk) be a sequence of k Bernoulli trials each with probability of success

p. For a given Bi
k consisting of m successes and k−m failures, Pr(Bk) = (1−p)k−mpm. If we

let X be the number of Bernoulli trials until m successes, then Pr(X = k) =
∑

I Pr({Bi
k}),

where I is the set of all Bi
k consisting of m− 1 successes and k−m failures (in any order)

then ending in a success. |I| =
(
k−1
m−1

)
. As {Bi

k} are equilikely,

Pr(X = k) =
(
k−1
m−1

)
(1− p)k−mpm for k = m,m+ 1, . . .

As above, if X is the number of trials until m successes, then let Y be the number of
failures until m successes. Y = X - m, giving:
P(Y = k) = P(X = k +m) =

(
k+m−1
m−1

)
(1− p)kpm, k = 0, 1, . . .

Exercise 24

If X is the number of gold fish caught in n trials, then

Pr(X = k) =
# outcomes with X=k

|Ω|

=
number of ways to catch k gold fish and n− k brown fish

number of ways to catch n fish
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We have N gold fish and M brown fish, so N +M total fish, so:

|Ω| =
(
N +M

n

)
# ways to catch k gold fish from N =

(
N

k

)
# ways to catch (n− k) brown fish from M =

(
M

n− k

)
⇒ Pr(X = k) =

(
N
k

)(
M
n−k
)(

N+M
n

) , k ∈ {0, 1, . . . , n}

(note some k in this set may have zero probability, i.e. in cases where k > N or n− k > M)
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Exercise 26

E[X] =
∞∑
k=0

ke−λ
λk

k!

= e−λ
∞∑
k=1

k
λk

k!
(0th term = 0)

= e−λλ

∞∑
k=1

λk−1

(k − 1)!

= e−λλ

∞∑
k′=0

λk
′

k′!

= e−λλeλ (ex =
∞∑
n=0

xn

n!
)

= λ

E[X2] =

∞∑
k=0

k2e−λ
λk

k!

= e−λ
∞∑
k=1

k

(k − 1)!
λk

= e−λ

( ∞∑
k=2

(k − 1)λk

(k − 1)!
+

∞∑
k=1

λk

(k − 1)!

)

= e−λ

(
λ2
∞∑
k=2

λk−2

(k − 2)!
+ λ

∞∑
k=1

λk−1

(k − 1)!

)

= e−λ

λ2 ∞∑
i=0

λi

i!
+ λ

∞∑
j=0

λj

j!


= e−λ(λ2eλ + λeλ)

= λ2 + λ

V ar(X) = E[X]2 − E[X2]

= λ− (λ2 + λ) = λ2
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Exercise 27

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
= λk

n!

k!(n− k)!

1

nk

(
1− λ
n

)−k (1− λ
n

)n
=
λk

k!

(
1− λ
n

)n n!

(n− k)!

(
n

(n− λ)n

)k
=
λk

k!

(
1− λ
n

)n n(n− 1)(n− 2) . . . (n− k + 1)

(n− λ)k

lim
n→∞

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
= lim

n→∞

λk

k!

(
1− λ
n

)n n

(n− λ)

n− 1

(n− λ)
. . .

n− k + 1

(n− λ)

=
λk

k!
e−λ

Exercise 28

E[X] =
∞∑
k=1

k
1

k(k + 1)

=
∞∑
k=0

k
1

k(k + 1)
(as 0th term = 0)

=

∞∑
k=0

1

k + 1
=

∞∑
k′=1

1

k′

This is a p-series with p=1, so diverges to infinity. Thus the mean is infinite.

Exercise 29

For any partition L of the sample space (l1, l2, . . . ),
pX(k) =

∑
l∈L(Pr(X = k|Y = l) Pr(Y = j) =

∑
l∈L Pr({X = k} ∩ {Y = l}) =∑

l∈L pX,Y (k, l) (using sum rule as for a given x, the events {X = x, Y = l1}, {X =
x, Y = l2}, . . . are disjoint).
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Exercise 30

Cov(X,Y ) = E((X − EX)(Y − EY ))

= E(XY −XEY − Y EX + EXEY )

= E(XY )− E(XEY )− E(Y EX) + E(EXEY )) (by linearity of expectation)

= E(XY )− EY EX − EXEY + EXEY )

= E(XY )− EXEY

Exercise 31

As X and Y are independent, pXY (kl) = pX,Y (k, l) = pX(k)pY (l)

E(XY ) =
∑
k

∑
l

k l pX,Y (k, l)

=
∑
k

∑
l

k l pX(k)pY (l)

=
∑
k

k pX(k)
∑
l

l pY (l)

= EXEY

Cov(X,Y ) = E(XY )− EXEY
= EXEY − EXEY (for independent X,Y)

= 0

Exercise 32

1. Consider the following:

pX,Y (x, y) x
1 2 3 pY (y)

y
1 1/6 1/6 2/6 2/3
2 0 1/6 1/6 1/3

pX(x) 1/6 2/6 3/6

Here EX = 14
6 , EY = 8

6 , EXY = 19
6

Cov(X,Y ) = E(XY )− EXEY = 19
6 −

14
6

8
6 6= 0.
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2. Consider the following:

pX,Y (x, y) x
1 2 3 pY (y)

y
1 1/3 0 1/3 2/3
2 0 1/3 0 1/3

pX(x) 1/3 1/3 1/3

Here EX = 2, EY = 4
3 , EXY = 8

3 , so Cov(X,Y ) = E(XY )− EXEY = 8
3 − 24

3 = 0.
However it can be seen that pX,Y 6= pXpY , so X and Y aren’t independent.

Exercise 33

By conditioning on Y we are just choosing a subset the sample space, so instead of being
interested in events satisfying (x ∈ K, y ∈ L), we now only want events with (x ∈ K, y = l).
pX,Y (k, l) ≥ 0 for all k, l (as the joint pmf was is valid pmf), which means pX,Y (., l) ≥ 0

for any fixed l. Thus for pY (l) > 0, pX|Y=l(., l) =
pX,Y (.,l)
pY (l) ≥ 0.∑

k pX,Y (k, l) = pY (l)⇒
∑

k pX|Y=l(k, l) = pY (l)/pY (l) = 1, as required.
We also want the probability of a union of disjoint events to be equal to the sum of their
probabilities. This property must be satisfied by the joint pmf (as it is a valid pmf), and
as the conditional pmf just gives the probabilities of events in a subset of the joint pmf
(rescaled by pY (y = l)), the conditional pmf will also satisfy this property.

Exercise 34

If X and Y are independent random variables then pX,Y (k, l) = pX(k)pY (l).

pX,Y (., l) =
pX,Y (., l)

pY (l)

=
pX(.)pY (l)

pY (l)

= pX(.)

Exercise 35

For the first example (Cov(X,Y ) 6= 0):

pX|Y=1 =

{
1/4 x = 1, 2

1/2 x = 3
pX|Y=2 =

{
0 x = 1,

1/2 x = 2, 3
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pY |X=1 =

{
1, y = 1

0, y 6= 1
pY |X=2 = 1/2, y = 1, 2 pY |X=3 =

{
2/3, y = 1

1/3, y = 2

Exercise 36

1.

Pr(X > k) = 1−
k∑

n=1

Pr(X = n)

= 1−
k∑

n=1

(1− p)n−1p

= 1− p
k−1∑
n′=0

(1− p)n′

= 1− p1− (1− p)k

1− (1− p)
for(1− p) 6= 1

= (1− p)k

As X > s+ t occuring implies X > s has also occured,

Pr(X > s+ t|X > t) =
Pr(X > s+ t,X > t)

Pr(X > t)

=
Pr(X > s+ t)

Pr(X > t)

=
(1− p)s+t

(1− p)t

= (1− p)s

= Pr(X > s)

2. As the geometric distribution is produced by a sequence of Bernoulli trials which are
iid, it makes sense that the probability of t more failures occurring given s failures
have already occurred should be the same as the probability of the first t trials being
failures - i.e. what’s already happened doesn’t influence future Bernoulli trials.

3. The discrete uniform distribution is not memory-less. e.g. For discrete uniform
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random variable with pX(x) = 1/L, x ∈ {a, a+ 1, . . . , a+ L}:

Pr(X > s+ t|X > t) =
Pr(X > s+ t)

Pr(X > t)

=
(t− L)L

(s+ t− L)L

=
t− L

s+ t− L
6= 1

sL
= Pr(X > s)

Exercise 38

E[E[h(X)|Y ]] =
∑
y

∑
x

h(x) pX|Y=y(x, y) pY (y)

=
∑
y

∑
x

h(x)
pX,Y (x, y)

pY (y)
pY (y)

=
∑
y

∑
x

h(x)pX,Y (x, y)

=
∑
x

h(x)pX(x)

= E[h(X)]

Exercise 40

1.
∫∞
−∞ fX(x)dx = Pr(Ω) = 1

2. Fx(k) = Pr(X ≤ k) =
∫ k
−∞ fX(x)dx. The CDF of a continuous random variable is

continuous everywhere (set fX(x) = 0 for any x outside support).

3. Set K = 1∫
f̃(x)dx

. This will then satisfy the three axioms of probability.

Exercise 41

EX =
∫
x 1
b−adx = 1

b−a
1
2(b2−a2) = 1

b−a
1
2(a+ b)(b−a) = a+b

2 . This is half the length of the
interval, which is what we’d expect the mean to be if uniformly distributed over a length.
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(EX)2 =
(a+ b)2

4
=
a2 + 2ab+ b2

4

E(X2) =
1

b− a

∫
x2dx =

b3 − a3

3(b− a)
=
b2 + ab+ a2

3

V ar(X) = E(X2)− (E)2

=
b2 + ab+ a2

3
− a2 + 2ab+ b2

4

=
a2 + b2 − 2ab

12
=

(b− a)2

12

Exercise 42

fX(x) =


0 x < a
1
b−a a ≤ x ≤ b
0 x > b

⇒ FX(x) =


0 x < a
x−a
b−a a ≤ x ≤ b
1 x > b

Exercise 44
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Exercise 50

Plotting a histogram (of densities not counts) of Sn = X1 + X2 + X3, against a normal
distribution (with mean 3/2, variance 3/12 (using var(S) = 3 ∗ var(Xi) for independent
Xi, mean(S)=3*mean(Xi):

The Central Limit Theorem says that for sufficiently large n, the distribution of Sn, where
Sn is the sum of n iid random variables, is approximately normal. This can be see in the
plots above - the normal distribution is a good approximation for distribution of the sum of
three uniformly distributed random variables. Similarly for S = X1+X2, plotting against
a normal distribution (with mean 1, variance 1/6 (using var(S)=2*var(Xi) for independent
Xi, mean(S)=2*mean(Xi). The approximation here is less good.
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For n=3:

Exercise 51

These sample values are close to the theoretical mean and variance.
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