
MATH4406 – HW2

Madeleine Nargar, 41214538

Question 1a)

Let:

x
t

= units of stored inventory at start of month t, x
t

2 {0, 1, . . . ,M},
y
t

= number of backlogged units at start of month t, y
t

2 {0, 1, . . . , } (assume no limit on

units back-logged),

s
t

= x
t

� y
t

⌘ ”net” units of stock at start of month t,

M = warehouse capacity a
t

= units ordered in month t,

D
t

= demand in month t, random variable distributed according to p
j

= P(D
t

= j), j =

0, 1, . . . .
h(u) = holding cost per unit stored for one month

b(u) = back-log cost per month

O(u) = cost per unit ordered,

f(u) = revenue per unit sold.

Assume timing of events is the same as in Figure 3.2.1(Puterman, Sec 3.2.1), with revenue

received for D
t

units during the order period (regardless of how many orders filled in t):

Assuming that orders are always back-logged whenever demand exceeds available units (i.e.

decision maker chooses how many units to order, but does not control back-logging, which

occurs automatically if necessary/possible), then the system is governed by the following
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equation:

s
t+1 = s

t

+ a
t

�D
t

Decision epochs: T = {1, 2, . . . , N}, N  1

State space: (states s ⌘ ”net” units of stock at start of month)

S = {. . . ,�1, 0, 1, . . . ,M}

Action set:

As = {0, 1, . . . ,maxorder
s

}, where maxorder
s

= min(M,M � s)

Transition probabilities:

P
t

(j|s, a) = p
s+a�j

Rewards: The following assumes that customers pay for units at the time they order them

(regardless of whether orders are filled immediately or back-logged). Also assumes that

order are added to the back-log (if necessary) at the end of month t, with their back-log

cost paid from the start of month t+ 1.

Revenue at time t = f(s
t

+ a
t

� s
t+1) (i.e. f(Dt

)) is dependent on s
t+1.

Instead use E(revenue at time t) =

P1
j=0 f(j)pj 8t < N .

In this formulation, expected revenue at t is bounded only by D
t

, not by s
t

+ a
t

(as it is

in formulation without back-logging).

) Expected reward:

r
t

(s, a) = �O(a)� h(max(s+ a, a))� b(�min(0, s)) +
P1

j=0 f(j)pj , for t = 1, . . . N � 1

r
N

(s) = g(+)
(max(0, s)� g(�)

(max(0,�s), for t = N

(where g(+)
= salvage value of inventory, g(�)

= penalty for back-logged units never

filled)

Question 1b)

Use r
t

(s, a) = �O(a)� h(max(s+ a, a))� b(max(0,�s)) +
P1

j=0 f(j)pj with:

f(u) = 8u )
P1

j=0 f(j)pj = 0 ⇤ 1/4 + 8 ⇤ 1/2 + 16 ⇤ 1/4 = 16

h(s, a) = max(s+ a, a), O(a) =

(
0 a = 0

4 + 2a a > 0

b(s) = max(0,�3s) g(+)
(s) = 0

No g(�)
(s) is specified, but some penalty for back-logged units that have been paid for

but never delivered seems sensible. e.g. g(�)
(s

N

) = max(0, 8s
N

) ⌘ refunding unfilled

orders.
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Assuming that a maximum of three units can be back-logged at once (to avoid infinite

state space as formulated above), gives:

rt(s,a) for t = 1, . . . , N � 1

s

-3 -2 -1 0 1 2 3

a

0 -1 2 5 8 7 6 5

1 -8 -5 -2 1 0 1 -

2 -11 -8 -5 -2 -3 - -

3 -14 -11 -8 -5 - - -

e.g. rN(s) = �max(0, 8s
N

) for t = N .

pt(j|s,a)

j

-3 -2 -1 0 1 2 3

s+a

-3 1 0 0 0 0 0 0

-2 3/4 1/4 0 0 0 0 0

-1 1/4 1/2 1/4 0 0 0 0

0 0 1/4 1/2 1/4 0 0 0

0 0 0 1/4 1/2 1/4 0 0

2 0 0 0 1/4 1/2 1/4 0

3 0 0 0 0 1/4 1/2 1/4

Question 1c)

In this formulation, all is the same as part a) except the rewards. Assuming that payment

for an order is received in the time period the order is filled (vs. time period in which order

is placed in part (a)). This means expected revenue at time t now depends on s
t

and a
t

,

as regardless of demand and back-log, orders filled is limited by inventory available.
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Revenue at time t

= f(orders filled in month t) =

(
f(D

t

�min(0, s
t

)) if D
t

�min(0, s
t

)  max(0, s
t

) + a
t

f(max(0, s
t

) + a(t)) if D
t

�min(0, s
t

) > max(0, s
t

) + a
t

) E(revenue at time t) =

P
a+s

j=0 f(j)pj + f(s+ a)
P1

j=s+a

p
j

) Expected reward:

r
t

(s, a) = �O(a)� h(max(s+ a, a))� b(�min(0, s)) +
P

a+s

j=0 f(j)pj + f(s+ a)
P1

j=s+a

p
j

,

for t = 1, . . . N � 1

r
N

(s) = g(+)
(max(0, s)� g(�)

(�min(0, s), for t = N

(where g(+)
= salvage value of inventory, g(�)

= penalty for back-logged units never deliv-

ered. Note: unlikely to require penalty for unfilled back-log here, as these units will have

attracted no revenue.)
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Question 2 (Problem 3.21)

For i = 1, 2, t 2 {1, 2, . . . , } :

Let V
t

= number of jobs in potential job queue, V i

t

2 V = {0, 1, . . . }
Let Xi

t

= number of jobs in eligible queue, Xi

t

2 X

i
= {0, 1, . . . }

Let Z
t

= random variable, number of arrivals to eligible queue, with P(Z
t

= n) = g(n) for
n � 0

Let Y i

t

= random variable, number of jobs completed by server i, with P(Y i

t

= n) = f i

(n)
for n � 0.

h
i

(n) = cost of holding n jobs in server i.

R = reward per job completed.

State space: S = V ⇥X

1 ⇥X

2

Decision epochs: T = {1, 2, . . . , }

Action set: Let ui
t

⌘ number admitted to server i at time t, where ui
t

2 U

i
= {0, 1, . . . , }.

Actions are of the form u = (u1, u2).
At = U

1 ⇥U

2 � {u
t

: u1
t

+ u2
t

> V
t

}, 8t 2 T .

The system is governed by the following state equations (giving the transition probabilities

below):

Xi

t+1 = min(0, Xi

t

+ ui
t

� Y
t

), subject to u1
t

+ u2
t

 V
t

8t 2 T
V
t

= Z
t

Transition probabilities:

Considering the servers individually, each have the following transition probabilities:
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P(x0|x, u) =

8
><

>:

P1
n=x+u

f(n) x0 = 0 i.e. Y � x+ u

f(x+ u� x0) 0 < x0  u+ x i.e. Y < x+ u ! x0 = x+ u� Y

0 x0 > u+ x

The number of arrivals to the eligible queue is independent of the jobs in the servers, and

of the previous system state (as any jobs not sent to a server are rejected, so nothing left

in eligible queue at the end of each time step), i.e. P(v0|v, x1, x2) = g(v0).

As the number of jobs completed by the servers are independent of each other, and of the

arrival rate (given a particular state), we can use:

P((v0, x10 , x20)|(v, x1, x2), (u1, u2)) = P(v0)P(x10 |x1, u1)P(x20 |x2, u2)

=

8
>>>>>><

>>>>>>:

0 xi
0
> xi + ui for any i, 8v, v0

g(v0)(
P1

n=x

1+u

1 f1
(n))(

P1
n=x

2+u

2 f2
(n)) x1

0
= x2

0
= 0, 8v, v0

g(v0)(f1
(x1 + u1 � x1

0
)(

P1
n=x

2+u

2 f2
(n)) 0 < x1

0  x1 + u1, x2
0
= 0, 8v, v0

g(v0)(f1
(x1 + u1 � x1

0
)(f2

(x2 + u2 � x2
0
) 0 < x1

0  x1 + u1, 0 < x2
0  x2 + u2, 8v, v0

g(v0)(
P1

n=x

1+u

1 f1
(n))(f2

(x2 + u2 � x2
0
) x1

0
= 0, 0 < x2

0  x2 + u2, 8v, v0

Rewards:

r
t

((v, x1, x2)|(u1, u2)) = R
P

i=1,2 E(min(Y i

t

, xi + u1))�
P

i=1,2 hi(x
i

+ ui)

where E(min(Y i

t

, xi + u1)) =
P

x

i+u

i�1
n=1 f i

(n) + (xi + ui)
P1

n=x

i+u

i f i

(n)

A good policy for the system (in my opinion) would be to allocate incoming jobs to the

faster/cheaper server (by some ratio of average service speed to holding cost) whenever its

queue was under a certain threshold (based on its holding cost); otherwise allocate jobs to

slower/dearer server whenever its queue was under a second threshold (based on the slow

server’s holding cost); otherwise reject the jobs.

e.g. (ufast, uslow) =8
><

>:

(max(0, Z � thrfast),max(0, Z � thrfast � thrslow)) for Xfast  thrfast, Xslow  thrslow

(0,max(0, Z � threshslow)) for Xfast > thrfast, Xslow  thrslow

(0, 0) for Xfast > thrfast, Xslow > thrslow

Question 3 (Problem 3.26)

Assume that the lion starts the day with s kg of meat in its gut, then may hunt and eat,

then at the end of the day the amount of meat in its gut descreases by 6 kg. Assume that

a lion can start a day with no meat in its gut, but starting day t with a negative amount

of meat in its gut means the lion dies at time t. Assume the lion can always find a group

of the desired size to hunt with, and that the lion never chooses to hunt in a group of more

than 6, as this will not increase its probability of a sucessful kill, but will descrease the
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amount of meat gained.

State space: S = {�1, 0, 1, . . . , 30},

where state s ⌘
(
starvation/death, s = �1

kg of meat in lion’s gut, s � 0

Decision epochs: {1, 2, . . . , T}

Action set: A = {0, 1, . . . , 6}, where action n ⌘
(
don’t hunt a = 0,

hunt in a group of a lions a � 1

Rewards: r(t = T ) = min{s(T ), 0}, i.e. MDP has value of �1 if lion has starved by

time T, or 0 if the lion has a non-negative amount of food in its gut in time T (i.e. still

alive).

This maximises the chance the lion will still be alive at time T (without regard to how

much food reserve it has left). It may be desirable for the lion to always have at a decent

amount of food in its gut (a risk minimisation strategy), in which case something of the

form r(t) = min{s(t),minimum target} for t 2 T

Transition probabilities:

P(j|s, a) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

1 j = �1, s = �1, a 2 A (once dead, lion stays dead)

0 j else, s = �1, a 2 A

1 j = min{�1, s� 6}, s � 0, a = 0 (action: don’t hunt)

0 j else, s � 0, a = 0

p
a

j = min{30, 164
a

� 6.5 + s}, s � 0, a � 1 (successful hunt in group of size a)

1� p
a

j = min{�1, s� 6.5}, s � 0, a � 1 (unsuccessful hunt)

0 j else, s � 0, a � 1

These assume: successful hunt in group of n gains 164/n kg of meat, each hunt consumes

0.5 kg of meat regardless of success, and that lions require 6 kg of meat daily regardless of

action taken.

Question 4

a) Let l ⌘ level, ⌧ ⌘ years in level, e ⌘ eligibility for promotion (0 = can’t apply, 1 = can

apply).

State space: States are of the form s = (l, ⌧, e), where l 2 L = {0, 1, 2, 3}, ⌧ 2 � =

{0, . . . , 9}, e 2 E = {0, 1}. The state space is a subset of L ⇥ � ⇥ E, consisting states

accessible from (0, 0, 0) by the following rules:

(l, ⌧, 1) ! (l + 1, 0, 0), for ⌧ < ⌧max(l), l < 3 where ⌧max(l) = 9� 2l
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(l, ⌧, 1) ! (l, ⌧ + 1, 0), for ⌧ < ⌧max(l), l < 3

(l, ⌧, e) ! (l, ⌧ + 1, 1), for ⌧ < ⌧max(l)� 1, l < 3

(l, ⌧, e) ! (l, ⌧ + 1, 0), for ⌧ = ⌧max(l)� 1, or l = 3, ⌧ < ⌧max(l)

This leads to 43 states.

Action set: A = {W,A}, where W ⌘ don’t apply, A ⌘ apply.

Decision epochs = {0,. . . ,9}

Rewards: r((l, ⌧, e)) = l

Transition probabilities:

P((l, 0, 0)|(l, ⌧, 1), A) = q⌧ (successful application)

P((l, ⌧ + 1, 0)|(l, ⌧, 1), A) = 1� q⌧ (unsuccessful application)

P((l, ⌧ + 1, 1)|(l, ⌧, e),W ) = 1, for ⌧ < ⌧max(l)� 1, l < 3

P((l, ⌧ + 1, 0)|(l, ⌧, e),W ) = 1, for ⌧ = ⌧max(l)� 1, or l = 3, ⌧ < ⌧max(l)
else, P(j|s, a) = 0

b) There are 18 states with e = 1 (i.e. where you are eligible to apply for promotion),

meaning there are only 18 states where a decision is necessary, with two options, wait or

apply, available in each. For other states only the wait action is possible. Thus, there

are 2

18
stationary deterministic decision rules possible. (There will be infinitely many

stationary randomised policies, consisting of q
d

(s) for each of the 18 states.)

⇧

SD

= D1 ⇥D2 · · ·⇥D43, where D
s

=

(
{W} 8s = (l, ⌧, e) : e = 0

{W,A} 8s = (l, ⌧, e) : e = 1

c) Simulating these policies (see promotionMDP.R), gives the following average rewards:

This suggests the ’apply as soon as you can’ policy is better.
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d) Implementing the policy evaluation algorithm gives comparable results with the simu-

lation above:

See promotionMDP.R for details.

e) Testing all the stationary deterministic policies (2

18
) shows that the ’apply as soon as

you can’ policy is in fact optimal. There are actually 512 degenerate optimal policies, with

only 9 of the ’eligible to apply’ states being relevant to the optimal policy, i.e. for all

states /2 {(0, 1, 1), (0, 3, 1), (0, 5, 1), (0, 7, 1), (1, 1, 1), (1, 3, 1), (1, 5, 1), (2, 1, 1), (2, 3, 1)}, the
action chosen does not a↵ect the optimal policy.

Question 5

For each individual baby: state space: S
i

= {1, 2, 3}, where 1 = sleeping, 2 = awake, 3 =

screaming; action set: A
i

= {1, 2}, where 1 = make baby i passive, 2 = feed/make active

baby i. Each baby has the same transition probabilities, P 1
when passive and P 2

when

active. The states and actions of the babies are independent of each other, subject to the

constraint that no more than two of the babies can be active at any given time. This leads

to the following formulation:

State space: S = S1 ⇥ S2 ⇥ S3, i.e. of form s = (s1, s2, s3)
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Action set: A = A1 ⇥A2 ⇥A3 � {(2, 2, 2)}, i.e. of form a = (a1, a2, a3)

T = {1,2,. . . } (treating this as a discrete time process, where for each time step baby i
starts in state s

i

, is made passive or active according to action a
i

then transitions to state

j
i

according to its state and active/passive status).

Rewards: r((s1, s2, s3), (a1, a2, a3) =
P

i

(r(s
i

) + r(a
i

)),

where r(s
i

) = �1(s
i

= 3), r(a
i

) = �1(a
i

= 2)

Transition probabilities: P((j1, j2, j3)|(s1, s2, s3), (a1, a2, a3)) =
Q

i

P(j
i

|s
i

, a
i

) =

Q
i

P ai
ji,si

(as babies are independent of each other, can use product rule).

Some possible policies:

Never feed ⇡
never

: d = (1, 1, 1) 8s

Feed when screaming ⇡
scream

: d =

8
><

>:
(a1, a2, a3) : ai =

(
1 s

i

6= 3

2 s
i

= 3

s 6= (3, 3, 3)

(2, 2, 1) s = (3, 3, 3)

Alternate feeding ⇡
alt

= ((2, 1, 1), (1, 2, 1), (1, 1, 2), . . . ) i.e. feed one baby each time, swap-

ping each time.

Running these over 10,000 steps (see bandit.R) gives the following average costs per step:

cost(⇡
never

) = 1.6874, cost(⇡
scream

) = 1.9934, cost(⇡
alt

) = 2.4343.

Solving the MDP (with the value iteration algorithm in the R package MDPtoolbox) shows

that ⇡
never

is actually the optimal policy. By lowering the penalty for feeding relative

to the screaming penalty, more interesting policies become optimal. For example, for

cost = number screaming + 0.6⇥ number feeding, the feed when scream policy is optimal,

while for cost = number screaming + 0.6⇥ number feeding, the optimal policy is to feed

a bandit whenever it isn’t sleeping (subject to only two at a time feeding, prioritising the

screaming bandits).
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rm(list =ls ())
library("MDPtoolbox")
library("combinat")

################SET UP##################################
q=0.75
T <- 9
L <- c(0:3)   #levels
taumax <- c(9-L*2)  #max tau possible for each level (9 - 2*#promotions needed)

##enumerating possible states##
S <- data.frame()
for (l in 0:2){
  for (t in c(0,2:taumax[l+1])){
    S <- rbind(S,c(l,t,0))
  }
  for (t in 1:(taumax[l+1]-1)){
    S <- rbind(S,c(l,t,1))
}}
for (t in 0:(taumax[4])) {
  S <- rbind(S,c(3,t,0))
}
names(S) <- c("lev","tau","elig")
N <- nrow(S)   #number of states
S$stnum <- 1:N
S$stlab <- paste0(S$lev,S$tau,S$elig)
attach(S)

##set up transition probs - mostly will be zeroes##
P <- array(data=0,dim=c(N,N,2),dimnames=list(S$stlab,S$stlab,c("wait","apply")))
#wait action, set all eligible  P to 1
#non-terminals
temp1 <- S[tau<taumax[lev+1]-1 & lev!=3,]
ind1 <- 
array(c(temp1$stlab,paste0(temp1$lev,temp1$tau+1,1),rep("wait",nrow(temp1))),dim=c(nrow(temp1),3))
#one before terminals (can't move to l,tmax,1)
temp2 <- S[(lev==3& tau<taumax[lev+1])|(lev!=3 & tau==taumax[lev+1]-1),]
ind2 <- 
array(c(temp2$stlab,paste0(temp2$lev,temp2$tau+1,0),rep("wait",nrow(temp2))),dim=c(nrow(temp2),3))
#only self loops for ends
tempT <- S[tau==taumax[lev+1],]
ind3 <- array(c(tempT$stlab,tempT$stlab,rep("wait",nrow(tempT))),dim=c(nrow(tempT),3))
P[rbind(ind1,ind2,ind3)] <- 1
#apply action
temp3 <- S[elig==1,]   #can apply
indS <- array(c(temp3$stlab,paste0(temp3$lev+1,0,0),rep("apply",nrow(temp3))),dim=c(nrow(temp3),3))
indF <- 
array(c(temp3$stlab,paste0(temp3$lev,temp3$tau+1,0),rep("apply",nrow(temp3))),dim=c(nrow(temp3),3))
P[indS] <- 1-q^temp3$tau
P[indF] <- q^temp3$tau

#check row sums add up to 1
apply(P[,,1],FUN=sum,MARGIN=1)
apply(P[,,2],FUN=sum,MARGIN=1)

##reward matrix, r((lev,tau,elig))=lev for all states (lev,taue,elig), all actions
R <- array(S$lev,dim=c(N,2),dimnames=list(S$stlab,c("wait","apply")))

##check MDP##
mdp_check(P,R)  #woohoo OK

#######find optimal policy with MDPtoolbox#####
print(MDP.prom <- mdp_finite_horizon(P, R, 1, 10))
print(cbind(S,MDP.prom$policy))

###############generate policies##########
#policies <- list(ifelse(S$elig==1,"apply","wait"), ifelse(S$tau >= 3 & S$elig==1,"apply","wait"), 
MDP.prom$policy)   
#names(policies) <- c("ASAP","tau3","best")
policies <- list(ifelse(S$elig==1,"apply","wait"), ifelse(S$tau >= 3 & S$elig==1,"apply","wait"))   
names(policies) <- c("ASAP","tau3")

##### PART C: simulate MC performance ########## 
trials <- 1000
r <- array(0,dim=c(length(policies),trials))
for (pol in 1:length(policies)) {
policy <- policies[[pol]]
for (i in 1:trials) {



  s <- 1
  #cat("init state=",S[s,]$stlab,"\n")
  for (t in 0:(T-1)) {
    a <- policy[s]
    r[pol,i] <- r[pol,i] + R[s,a]
    s <- sample(1:N,1,prob=P[s,,a])
    #cat("t=",t," a=",a," r=",r[i],"new s=",S[s,]$stlab,"\n")
  }
  r[pol,i] <- r[pol,i] + R[s,a] 
  #cat("t=9, total value = ",r[i],"\n") 
}
cat("policy = ",names(policies)[pol], "avg value=",mean(r[pol,]),"\n")
}
#plot means and conf intervals
plotmeans(c(r[1,],r[2,]) ~ c(rep(1,trials),rep(2,trials)),connect=FALSE,xlab="policy",ylab="mean 
value",main="Comparing policies: Monte Carlo simulation 
(n=1000)",mean.labels=TRUE,legend=c(expression(pi[1]),expression(pi[3])),pch=".",n.label=FALSE,gap=0.5)

#############PART D: policy evaluation algorithm###########
for (pol in 1:length(policies)) {
  policy <- policies[[pol]]
  
  U <- array(data=0,dim=c(N,10),dimnames=list(S$stlab,c(1:10)))
  
  for (s in 1:N) {   #t=N
    U[s,10] <- R[s,1]
  }
  for (t in 9:1) {
    for (s in 1:N) {
      U[s,t] <- (R[s,policy[s]] + sum(P[s,,policy[s]]*U[,t+1]))
    }
  }
  cat("policy = ",names(policies)[pol],", value of policy = ",U[1,1],"\n")
}

############PART E: all stationary policies######
###set up policies

#make list of decision nodes (states with elig=1)
dec.nodes <- S[S$elig==1,]$stnum
#all 2^18 combinations of wait/apply for 18 decision states
dec.pols <- hcube(rep(2,length(dec.nodes)),1)
colnames(dec.pols) <- as.numeric(dec.nodes)
#set action for all others (elig=0) to 1 (wait)
other.nodes <- array(data=1,dim=c(nrow(dec.pols),N-ncol(dec.pols)))
colnames(other.nodes) <- as.numeric(S[-dec.nodes,]$stnum)
#combine and sort, now have 2^18 policies, with decision for each state
all.policies <- cbind(dec.pols,other.nodes)
all.policies <- all.policies[,order(as.numeric(colnames(all.policies)))]

#run policy eval alg
V <- rep(0,nrow(all.policies))
names(V) <- c(1:nrow(all.policies))
for (pol in 1:nrow(all.policies)) {
  policy <- all.policies[pol,]
  
  U <- array(data=0,dim=c(N,10),dimnames=list(S$stlab,c(1:10)))
  
  for (s in 1:N) {   #t=N
    U[s,10] <- R[s,1]
  }
  for (t in 9:1) {
    for (s in 1:N) {
      U[s,t] <- (R[s,policy[s]] + sum(P[s,,policy[s]]*U[,t+1]))
    }
  }
  #cat("policy = ",names(policies)[pol],", value of policy = ",U[1,1],"\n")
  V[pol] <- U[1,1]
}
max(V)   #value of optimal policy
length(which(V==max(V)))  #how many policies are optimal?
opt.pol <- all.policies[which(V==max(V)),]   #collect all
colnames(opt.pol) <- S$stlab
apply(opt.pol,2,FUN=mean)   #check which states have same decision in all optimal policies (ones that 
vary don't matter)
apply(opt.pol,2,FUN=mean)[S$elig==1 & apply(opt.pol,2,FUN=mean) != 1.5] #only 9 of the 18 'decision 
states' have actions relevant to opt. policy, all have action=apply





cat("\014")
rm(list =ls ())
library("MDPtoolbox")

feedcost = -.5
screamcost = -1

#transition probs for each individual baby
p.act <- matrix(c(0.6, 0.1, 0.3, 0.5, 0.2, 0.3, 0.3, 0.6, 0.1), 3, 3, byrow=TRUE)
p.pas <- matrix(c(0.6, 0.1, 0.3, 0.1, 0.3, 0.6, 0.2, 0.1, 0.7), 3, 3, byrow=TRUE)
p <- list(p.pas,p.act)

#actions: of form (a1,a2,a3), where ai=1:baby i is passive, ai=2:baby i is active)
A <- expand.grid(a1=1:2,a2=1:2,a3=1:2)[1:7,]     #don't include (2,2,2) as only 2 babies feeding at 
once permitted  
A$reward <- apply(A,1,function(x) feedcost*sum(A[x,]==2))  #cost for taking this action (from any 
state) i.e. # babies feeding 

#states: of form (s1,s2,s3) where si=1:baby i is sleeping, si=2:baby i is content, si=3:baby i is agro
S <- expand.grid(s1=1:3,s2=1:3,s3=1:3)
S$reward <- apply(S,1,function(x) screamcost*sum(S[x,]==3))  #cost for being in this state (for any 
action) i.e. #babies in state 3
N <- nrow(S)

#reward matrix R[s,a] - rewards not destination dependent
R <- outer(S$reward,A$reward,function(x,y) x+y)     #cost of feeding + cost of screaming for each s,a 
combination

#transition matrix for combined MC, P[s_i,s_j,a]
P <- array(0, dim=c(N,N,nrow(A)))
for (s in 1:nrow(A)){
  for (i in 1:N){
    for (j in 1:N){
      #as babies indep, P[(s1_i,s2_i,s3_i),(s1_j,s2_j,s3_j)|(a1,a2,a3)] = 
p(s1_i,s1_j|a1)*p(s2_i,s2_j|a2)*p(s3_i,s3_j|a3)
      P[i,j,s] <- p[[A[s,1]]][S[i,1],S[j,1]]*p[[A[s,2]]][S[i,2],S[j,2]]*p[[A[s,3]]][S[i,3],S[j,3]]
}}}

#some policies to test: 
policy.neverfeed <- rep(1,N)  #don't feed ever
policy.alternatefeed <- rep(c(2,3,5),9)  #feed one baby each time, alternating
policy.feedwhenscream <- c(1,1,2,1,1,2,3,3,4,1,1,2,1,1,2,3,3,4,5,5,6,5,5,6,7,7,7)  #feed as many 
screaming babies as possible

######simulate cost of MC given policy
SIMMDP <- function(policy,policyname) {
steps <- 10000
s <- 1 #starting state
r <- 0   #reward at start
#cat("s_0 =", s)
for (t in 1:steps){
  a <- policy[s]
  r <- r + R[s,a]
  s <- sample(1:N,1,prob=P[s,,a])
  #cat("t=",t," a=",a," r=",r, "s=",s)
}
r <- r + R[s]
cat("r_n = ",r)
cat("policy: ",policyname,",", "avg cost = ",r/steps)
}

SIMMDP(policy.neverfeed,"never feed")
SIMMDP(policy.alternatefeed,"alternate feed")
SIMMDP(policy.feedwhenscream,"feed when scream")

###plot means and conf intervals
plotmeans(c(r[1,],r[2,]) ~ c(rep(1,trials),rep(2,trials)),connect=FALSE,xlab="policy",ylab="mean 
value",main="Comparing policies: Monte Carlo simulation 
(n=1000)",mean.labels=TRUE,legend=c(expression(pi[1]),expression(pi[3])),pch=".",n.label=FALSE,gap=0.5)

#####for comparison, using MDPtoolbox:
#finding optimal policy:
print(MDPresult <- mdp_value_iteration(P,R,discount=1,epsilon=0) )
policy.best <- MDPresult$policy

#evaluate various policies (gives much the same results as sim above):
cat("best policy, avg cost:",mean(mdp_eval_policy_iterative(P, R, 



discount=1,policy=policy.best,max_iter=10000,V0=rep(0,N),epsilon=0))/10000)
cat("never feed, avg cost:",mean(mdp_eval_policy_iterative(P, R, 
discount=1,policy=policy.neverfeed,max_iter=10000,V0=rep(0,N),epsilon=0))/10000) #opt for feedcost=-1
cat("alternate feed, avg cost:",mean(mdp_eval_policy_iterative(P, R, 
discount=1,policy=policy.alternatefeed,max_iter=10000,V0=rep(0,N),epsilon=0))/10000)
cat("feed when scream, avg cost:",mean(mdp_eval_policy_iterative(P, R, 
discount=1,policy=policy.feedwhenscream,max_iter=10000,V0=rep(0,N),epsilon=0))/10000 ) #opt for 
feedcost=-0.6
#for feedcost=-0.5, feed whenever awake or scream is opt

#show optimal policy in terms of action for each baby in each state
showpol <- cbind(S[1:3],A[policy.best,1:3])
rownames(showpol) <- rownames(S)
showpol


