
MATH4406 – HW4

Madeleine Nargar, 41214538

Question 1

Consider a machine which has a disk which tends to slip out of alignment. Here i ≡ degree
of misalignment, with i = 0 ≡ perfectly aligned. Every time the machine is used the disk
will either remain at its current level of alignment, or worsen by a random (but usually
small) amount. Assume that the alignment cannot improve spontaneously (though this
needn’t be true in other machine replacement scenarios). At each time step the machine
can either be used as normal, or the disk can be re-aligned, incurring a cost of R and
returning the machine to state 0. When the machine is misaligned it is less efficient, so has
increased running costs.

Example parameters: R = 100, C(i) = 10 + i, Pi,j =

{
0 j < i

0.5 ∗ 0.5j−i j ≥ i

Question 2

Stochastic ordering describes a scenario in which one random variable ’tends’ to be larger
than another. Considering the random variable Ti := state at time t + 1 given state at
time t is i, this is a sensible assumption for systems in which states evolve randomly, but
with a tendency to decline (or a tendency to move to nearby states). For example, in the
example given in Question 1, consider if at time t we are in state 0 (’perfect’) or state 50
(’very bad’). Although it is possible to reach any larger state at time t+ 1, it is far more
likely to that it+1 = 51 if it = 50 than if it = 0 (as misalignment is random, but usually
small, next state is likely to be nearby).

Question 3

Using the notation described for Part 1:

State space: S = {0, 1, 2, . . . }

Action set: A = {0, 1}, where 0 ≡ don’t replace, 1 ≡ replace.

Transition probabilities: p(j|s, a) =


Ps,j a = 0

1 a = 1, j = 0

0 a = 1, j 6= 0

1

sciitadmin
Sticky Note
5



Rewards: r(s, a) =

{
−C(s) a = 0

−C(s)−R a = 1
Assuming operating cost is incurred first, regardless of action taken, then replacement may
occur. Assumes C(i) ≥ 0 for all i.

Objective: maximise expected total discounted reward (vπλ(s), ∀s ∈ S):

vπλ(s) = limN→∞E
π
s

∑N
t=1 λ

t−1r(st, at)

Question 4

Letting w(i) be the value-function (standard-form, i.e. maximisation criteria), and using
rewards and transitions from Q3:

w(i) = sup
a∈A

r(s, a) +
∑
j∈S

λp(j|s, a)w(j)


= max

−C(i) +
∞∑
j=0

λPi,jw(j),−C(i)−R+ λw(0)


(replacing sup with max as finite action set)

= −C(i) + max

λ
∞∑
j=0

Pi,jw(j),−R+ λw(0)


= −C(i)−min

−λ
∞∑
j=0

Pi,jw(j), R− λw(0)


max(X) = −min(−X)

Letting v(i) = −w(i), i.e. value function wrt minimisation criteria

v(i) = C(i) + min

−λ
∞∑
j=0

Pi,jw(j), R− λw(0)


= C(i) + min

λ
∞∑
j=0

Pi,jv(j), R+ λv(0)



2



Question 5

Let vn(i) be value function given by nth iteration of the value iteration algoritm.

Claim: vn(i) is an increasing function in i, for all n ≥ 0.

Proof (by induction):
v0 is arbitrary, so set v0(i) = C(i)⇒ v0(i) increasing.
(C(i) increasing as per problem definition).

Assume vk(i) is an increasing function in i.

vk+1(i) = C(i) +min{R+ λvk(0), λ
∑∞

j=0 Pi,jv
k(j)} (value-iteration)

R+ vk(0) is a constant with respect to i.

Q(i) := λ
∑∞

j=0 Pi,jv
k(j) = λE[vk(j)|i] = λE[vk(Ti)]

As vk(i) is an increasing function (by inductive assumption), we have E[vk(Ti)] increasing
(by stochastic ordering property, E[f(Ti+1)] ≥ E[f(Ti)] ).

So for λ ∈ (0, 1) we have: vk+1(i) = increasing fn C(i) + min{ constant , increasing fn
Q(i)} ⇒ vk+1(i) is increasing function.

⇒ vn(i) increasing function for all n ≥ 0.

vn(i)→ v(i)⇒ v(i) is increasing function.

Question 6

Want to show ∃ i′ ≤ ∞ : d∗(i) =

{
0 (don’t replace) i < i′

1 (replace) i ≥ i′
(∗)

Case 1: d∗(i) = 0 ∀i,⇒ (∗) holds, i′ =∞

Case 2: For some i, d∗(i) 6= 0. Let k = min{i : d∗(i) = 1}

For state k, R+ λv(0) ≤ λ
∑∞

j=0 Pk,jv(j) = λE[v(Tk)]

As v(i) is an increasing function (see Q5), by stochastic ordering property, E[v(Tk)] ≤
E[v(Tk+1)] for all k ⇒

For all i > k, R+λv(0) ≤ λE[v(Tk)] ≤ λE[v(Ti)] = λ
∑∞

j=0 Pi,jv(j)⇒ d∗(i) = 1.

⇒ (∗) holds, i′ = k

3



Question 7

For i′ =∞ we need a case where replacement cost is sufficiently high compared to expected
operating cost that replacement is never the optimal action, i.e. R+λv(0) > λ

∑∞
j=0 Pi,jv(j)

for all i.

For example, choose:

R = 1000, C(i) =

{
0 i = 0

1 i > 0
, Pi,j =

{
0.9 j = 0

0.1 i = 0, j = 1 or i > 0, j = i

In this case v(i) is constant for all i > 0 as rewards and transitions symmetrical - call this
v(k), giving:
v(0) = min{1000 + λv(0), λ(0.9v(0) + 0.1v(k))},
v(k) = min{1000 + λv(0), 1 + λ(0.9v(0) + 0.1v(k))}
Working this through gives d∗(i) = 0 for all i (i.e. never replace).

Question 8

Based on the properties above, we can consider the process instead as a series of cycles,
each consisting the machine starting in state 0, changing condition until reaching a state
i > k, at which point the machine is replaced (returning to 0 to begin a new cycle). By
simulating the cycle cost incurred with varying k values, we should be able to find i′ by
seeking the k which minimises the expected (discounted) per step cycle cost. This approach
ignores the starting state (starting all cycles from 0), but as this is an infinite horizon model
this should not affect the optimal policy.

The following starts from k = 0 and simulates per step cycle cost for a cycle where replace
is chosen for all states i > k. This cost should decrease with increasing k until k = i′, then
increase thereafter. i′ can be estimated by running the following many times and finding
average of i′est.

1. k = 0, ACold = R+ C(0)

2. i = 0, t = 0, v = C(0)

3. while i < k :

t = t+ 1

i = Y (i) where Y ≡ r.v. Ti, drawn from distribution p(.|i, 0)

v = v + λtC(i)

ACnew = (v + λtR)/(t+ 1) replace on last step

4. if ACnew > ACold : i′est = k, stop.

else: k = k + 1, ACold = ACnew, go to Step 2.

4



Question 9

Theorem 6.3.3. Let v0 ∈ V , let {vn} be iterates of value iteration algorithm. Then the
algorithm has the following properties:

a. it converges linearly at rate λ
i.e. vn converges in norm to v∗λ AND λ = min{K : ∀n, ‖vn+1 − v∗λ‖ ≤ K‖vn − v∗λ‖}

b. its asymptotic average rate of convergence (AARC) is λ
i.e. vn converges in norm to v∗λ AND

lim sup
n→∞

(
‖vn − v∗λ‖
‖v0 − v∗λ‖

)1/n

= λ

c. its convergence is O(λn), i.e.

∃K <∞ : lim sup
n→∞

‖vn − v∗λ‖
λn

≤ K

d. for all n,

‖vn − v∗λ‖ ≤
λn

1− λ
‖v1 − v0‖

e. for dn ∈ argmaxd∈D{rd + λPdv
n},

‖vdnλ − v
∗
λ‖ ≤

2λn

1− λ
‖v1 − v0‖

d. and e. provide bounds on the quality of the estimate obtained after a certain number
of iterations of the algorithm. For example, this may be used to estimate the number of
iterations required to get within ε of v∗λ.

a. and b. describe the rate of convergence, with AARC describing the long-run convergence
behaviour (potentially faster than rate of linear convergence, as a) must hold for all n). In
this case alogorithm convergence monotonicly, linear rate of convergence and AARC are
the same.

5


