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Exercise 1.
Part 1.

∅ ∈ F , by property 1 of a sigma algebra,
⇒ ∅c ∈ F , by property 2 of a sigma algebra,
⇒ Ω ∈ F , since ∅c = Ω,

∴ Ω ∈ F .

Part 2.
Say A1, A2, ... ∈ F then

Ac1, A
c
2, ... ∈ F , by property 2 of a sigma algebra,

⇒ ∪iAci ∈ F , by property 3 of a sigma algebra,
⇒ (∩iAi)c ∈ F , by De Morgan’s rules,
⇒ ∩iAi ∈ F , by property 2 of a sigma algebra,

∴ A1, A2, ... ∈ F ⇒ ∩iAi ∈ F .

Exercise 2.
Part 1.
For any A ∈ F then

P(A ∪Ac) = P(Ω) = 1

by property 2 of a probability measure, and by property 3

P(A ∪Ac) = P(A) + P(Ac) = 1

as A and Ac are disjoint. Rearranging gives

∴ P(Ac) = 1− P(A).

Part 2.
As P(Ac) = 1 − P(A) from previous proof and P(Ω) = 1 by property 2 of a
probability measure then P(Ωc) = 1− P(Ω) = 1− 1 = 0 and as Ωc = ∅ then

∴ P(∅) = 0.
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Part 3.
Say A1, A2 ∈ F but not necessarily disjoint. Note that A1 ∩ Ac2 and A2 are
disjoint so

P((A1 ∩Ac2) ∪A2) = P(A1 ∩Ac2) + P(A2).

Also see that (A1 ∩Ac2)∪A2 = (A1 ∪A2)∩Ω = A1 ∪A2 by the distributive law,
so

⇒ P(A1 ∪A2) = P(A1 ∩Ac2) + P(A2). (1)

Now notice that A1 ∩Ac2 and A1 ∩A2 are disjoint so

P((A1 ∩Ac2) ∪ (A1 ∩A2)) = P(A1 ∩Ac2) + P(A1 ∩A2).

As (A1 ∩Ac2) ∪ (A1 ∩A2) = A1 then

⇒ P(A1) = P(A1 ∩Ac2) + P(A1 ∩A2). (2)

Rearranging (1) and (2) for P(A1 ∩Ac2) gives

P(A1 ∪A2)− P(A2) = P(A1)− P(A1 ∩A2)

∴ P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2).

Exercise 4.
Assume that P(A|B) = P(A), and combine this with the definition of conditional
probability

⇒ P(A|B) =
P(A ∩B)

P(B)
= P(A)

⇒ P(A ∩B) = P(A)P(B)

so this means that P(A|B) = P(A) implies A and B are independent. The same
holds in reverse be the above argument.

∴ P(A|B) = P(A)⇔ A,B independent.

Exercise 5.
Say that R is the result of the die roll. The question asks for

P(R = 6|R is even) = P(R = 6|R ∈ {2, 4, 6})

=
P(R ∈ {6} ∩R ∈ {2, 4, 6})

P(R ∈ {2, 4, 6})

=
P(R = 6)

P(R ∈ {2, 4, 6})

=
1/6

3/6

=
1

3
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using the definition of conditional probability, and the equilikely principle.

∴ P(R = 6|R is even) =
1

3
.

Exercise 6.
Part 1.
If P(B) > 0 then P(A|B) is defined to be

P(A|B) =
P(A ∩B)

P(B)

and rearranging implies that

∴ P(A ∩B) = P(B)P(A|B).

Part 2.
If {Bi} partition Ω then note that⋃

i

(A ∩Bi) = A ∩
⋃
i

Bi = A ∩ Ω = A

by the distributive law. Also note that the events {A∩Bi} are mutually disjoint
as the {Bi} are mutually disjoint. Therefore

P(A) = P

⋃
i

(A ∩Bi)

 =
∑
i

P(A ∩Bi)

and by the previous question we have∑
i

P(A ∩Bi) =
∑
i

P(A|Bi)P(Bi)

∴ P(A) =
∑
i

P(A|Bi)P(Bi) =
∑
i

P(A ∩Bi).

Part 3.

P(Bi|A) =
P(Bi ∩A)

P(A)
by def. of conditional prob.

=
P(A ∩Bi)∑
i P(A ∩Bi)

by commutitivity and L.O.T.P

=
P(A|Bi)P(Bi)∑

i P(A ∩Bi)
by multiplication rule.
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∴ P(Bi|A) =
P(A|Bi)P(Bi)∑

i P(A ∩Bi)
.

Exercise 7.
When originally guessing you have no information about the location of the
prize, and guess correctly with probability 1/3. When one of the doors is opened
then now you have some information (i.e. the prize isn’t behind that door). If
you stick with your current guess then you are not using the information you
were just given, and win with probability 1/3. However, if you swap to the third
door then you’re effectively updating your guess to the reduced situation with
only two doors.

Exercise 8.
Assume that X ∈ R or in some other set that doesn’t include ±∞ (like, for
example, the extended reals). So by assumption −∞ < X <∞.
Part 1.

lim
x→−∞

FX(x) = lim
x→−∞

P(X ≤ x)

= P(X ≤ −∞)

= P({ω ∈ Ω : X(ω) ≤ −∞})
= P(∅)
= 0.

Part 2.

lim
x→∞

FX(x) = lim
x→∞

P(X ≤ x)

= P(X ≤ ∞)

= P({ω ∈ Ω : X(ω) ≤ ∞})
= P(Ω)

= 1.

Part 3.
Consider ∀x, y s.t. −∞ < x1 < x2 <∞ the values

FX(x1) = P({X ∈ (−∞, x1]})
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and

FX(x2) = P({X ∈ (−∞, x2]})
= P({X ∈ (−∞, x1]} ∪ {X ∈ (x1, x2]})
= P({X ∈ (−∞, x1]}) + P({X ∈ (x1, x2]}) as events disjoint

= FX(x1) + P({X ∈ (x1, x2]})
≥ FX(x1) as P(·) ≥ 0

∴ FX(·) is non-decreasing.

Exercise 9.
Say X is the sum of the two fair die. The pmf for X is

pX(x) =



1/36, x = 2

2/36, x = 3

3/36, x = 4

4/36, x = 5

5/36, x = 6

6/36, x = 7

5/36, x = 8

4/36, x = 9

3/36, x = 10

2/36, x = 11

1/36, x = 12

0, otherwise

so therefore the cdf is

FX(x) =



0, x < 2

1/36, 2 ≤ x < 3

3/36, 3 ≤ x < 4

6/36, 4 ≤ x < 5

10/36, 5 ≤ x < 6

15/36, 6 ≤ x < 7

21/36, 7 ≤ x < 8

26/36, 8 ≤ x < 9

30/36, 9 ≤ x < 10

33/36, 10 ≤ x < 11

35/36, 11 ≤ x < 12

1, 12 ≤ x
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FX(x)

x

1 2 3 4 5 6 7 8 9 10 11 12

2/36

4/36

6/36

8/36

10/36

12/36

14/36

16/36

18/36

20/36

22/36

24/36

26/36

28/36

30/36

32/36

34/36

1

0

Exercise 10.
pX(x)

x

1 2 3 4 5 6 7 8 9 10 11 12

2/36

4/36

6/36

0

The jumps in the cdf specify the heights of the pmf. It is as if the cdf is pushed
down towards the x axis.
Exercise 11.
Say X is the sum of the two fair die. Using the pmf specified earlier then

E[X] =

12∑
x=2

xpX(x)

= 2× 1/36 + 3× 2/36 + 4× 3/36 + 5× 4/36 +

6× 5/36 + 7× 6/36 + 8× 5/36 + 9× 4/36 +

10× 3/36 + 11× 2/36 + 12× 1/36

= 7.

∴ E[X] = 7.
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Exercise 12.
If X ∈ N0 then

E[X] =

∞∑
k=0

kP(X = k)

=0P(X = 0) + 1P(X = 1) + 2P(X = 2) + ...

=P(X = 1)+

P(X = 2) + P(X = 2)+

P(X = 3) + P(X = 3) + P(X = 3)+

P(X = 4) + P(X = 4) + P(X = 4) + P(X = 4) + ...

=P(X > 0) + P(X > 1) + P(X > 3) + P(X > 4) + ...

=

∞∑
k=0

P(X > k)

=

∞∑
k=0

FX(k).

∴ X ∈ N0 ⇒ E[X] =

∞∑
k=0

FX(k).

Exercise 13.
Part 1.

E[cX] =

∫
ω∈Ω

cX(ω) dω

= c

∫
ω∈Ω

X(ω) dω

= cE[X].

∴ For deterministic c⇒ E[cX] = cE[X].

Part 2.

E[X + Y ] =

∫
ω∈Ω

X(ω) + Y (ω) dω

=

∫
ω∈Ω

X(ω) dω +

∫
ω∈Ω

Y (ω) dω

= E[X] + E[Y ].

∴ E[X + Y ] = E[X] + E[Y ].
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Exercise 14.
For some constants c1, c2 then

Var[c1X + c2] = E[(c1X + c2)2]− E[c1X + c2]2

= E[c21X
2 + 2c1c2X + c22]− (c1E[X] + c2)2

= c21E[X2] + 2c1c2E[X] + c22 − c21E[X]2 − 2c1c2E[X]− c22
= c21E[X2]− c21E[X]2

= c21

(
E[X2]− E[X]2

)
= c21Var[X].

∴ Var[c1X + c2] = c21Var[X].

Exercise 15.
Assume that Var[X] = 0, so

Var[X] =

∞∑
k=−∞

(k − E[X])2pX(k) = 0.

Say that pX(k) > 0 for some set k ∈ S, the support of X. So

Var[X] =
∑
k∈S

(k − E[X])2pX(k) = 0.

As each summand is non-negative then the summands much each be zero.

⇒ ∀k ∈ S : (k − E[X])2pX(k) = 0

Then, since pX(k) 6= 0 for k ∈ S then

⇒ ∀k ∈ S : (k − E[X])2 = 0.

The only solution to this set of equalities for |S| = 1 and k = E[X], i.e.
S = {E[X]}. As pX(k) > 0 for k ∈ S, and as

∑
k pX(k) = 1 then therefore

pX(E[X]) = 1.

∴ Var[X] = 0⇒ the support of X only contains a single value.

Exercise 17.
By applying the binomial theorem one can see that

n∑
i=1

P(X = i) =

n∑
i=1

(
n

k

)
pk(1− p)n−kk

= (p+ 1− p)n

= 1.
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∴
n∑
i=1

P(X = i) = 1.

Exercise 18.
Part 1.
Given X ∼ Bin(n, p) then one could split this up to be

X =

n∑
i=1

Xi

where Xi ∼ Ber(p) with E[Xi] = p. Next calculate

E[X] = E

 n∑
i=1

Xi


= E[X1] + E[X2] + ...+ E[Xn]

= nE[X1] as identically distributed

= np.

∴ X ∼ Bin(n, p)⇒ E[X] = np.

Part 2.
If X ∼ Bin(n, p) then one can see this as the number of “successes” out of n
independent trials each with probability p of success. Equivalently, one can look
at n−X the number of failures out of n independent trials each with probability
1− p of failing, and conclude that

∴ n−X ∼ Bin(n, 1− p).

Exercise 19.
Say that X ∼ Bin(20, 0.25) is the number of answers guessed correctly out of
the multiple choice exam.

P(X ≥ 10) =

20∑
i=10

P(X = i)

=

20∑
i=10

(
20

i

)
0.25i 0.7520−i

= 0.00992228 + 0.00300675 + 0.000751688 + 0.000154192 +

0.0000256987 + 3.4265e−6 + 3.56927e−7 + 2.79942e−8 +

1.55524e−9 + 5.45697e−11 + 9.09495e−13

= 0.01386442.
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∴ P(Guessing 10 or more correctly) = 0.01386442.

Exercise 20.
Say that X ∼ Geo(p), then

P(X = k) = P(inf{i ∈ {1, 2, 3, ...}|bωi = 1} = k)

= P(bω1 = 0, bω2 = 0, ..., bωk−1 = 0, bωk = 1)

= P(bω1 = 0)P(bω2 = 0)...P(bωk−1 = 0)P(bωk = 1)

= (1− p)(1− p)...(1− p)p
= (1− p)k−1p.

⇒ P(X = k) = (1− p)k−1p.

Also,

∞∑
k=1

P(X = k) =

∞∑
k=1

(1− p)k−1p

= p

∞∑
k=1

(1− p)k−1

= p

∞∑
k=0

(1− p)k

= p
1

1− (1− p)
sum of geometric series

=
p

p

= 1.

∴ P(X = k) = (1− p)k−1p and

∞∑
k=1

P(X = k) = 1.

Exercise 21.
Assuming the event of getting a flat tyre is iid Bernoulli over the consecutive bi-
cycle rides with p = 0.01. So the chance of 20 of these trials failing consecutively
is (1− p)20 = 0.9920 ≈ 0.8179.

∴ P(20 consecutive rides without a flat) = 0.9920 ≈ 0.8179.

Exercise 22.
This random variable is simply one less than the equivalent geometric distribu-
tion originally defined, i.e. X ∼ Geo(p) and X∗ = X − 1 ∼ Geo0(p).
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The original distribution has support S = {1, 2, ...} and for k ∈ S then pX(k) =
(1− p)k−1p.

Therefore the new shifted distribution has support S∗ = {0, 1, ...} and for k ∈ S∗
then pX∗(k) = (1− p)kp.

∴ X∗ ∼ Geo0(p) has support N0 and for k ∈ N0 then pX∗(k) = (1− p)kp.

Exercise 26.
Note the Taylor series expansion

eλ =

∞∑
k=0

λk

k!
.

Say that X ∼ Poi(λ), then

E[X] =

∞∑
k=0

ke−λ
λk

k!

=

∞∑
k=1

ke−λ
λk

k!

= e−λ
∞∑
k=1

λk

(k − 1)!

= λe−λ
∞∑
k=1

λk−1

(k − 1)!

= λe−λ
∞∑
k=0

λk

k!

= λe−λeλ

= λ.
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To calculate variance start with

E[X2] =

∞∑
k=0

k2e−λ
λk

k!

=

∞∑
k=1

k2e−λ
λk

k!

= e−λ
∞∑
k=1

k
λk

(k − 1)!

= e−λ

 ∞∑
k=1

(k − 1)
λk

(k − 1)!
+

∞∑
k=1

λk

(k − 1)!


= e−λ

λ2
∞∑
k=2

λk−2

(k − 2)!
+ λ

∞∑
k=1

λk−1

(k − 1)!


= e−λ

λ2
∞∑
k=0

λk

k!
+ λ

∞∑
k=0

λk

k!


= e−λ

[
λ2eλ + λeλ

]
= λ2 + λ.

then combine these results to get

Var[X] = E[X2]− E[X]2

= λ2 + λ− (λ)2

= λ.

∴ E[X] = λ and Var[X] = λ.
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Exercise 28.
Noting that

∑
n

1
n →∞ by the p-series test

E[X] =

∞∑
k=−∞

kP(X = k)

=

∞∑
k=1

k

k(k + 1)

=

∞∑
k=1

1

k + 1

=

∞∑
k=2

1

k

=∞.

∴ E[X] =∞.

Exercise 29.
Since ∀` ∈ Z then the events {Y = `} are disjoint and partition Ω. Hence we
can use the law of total probability conditioning on these events:

pX(k) = P(X = k)

=

∞∑
`=−∞

P(X = k|Y = `)P(Y = `)

=

∞∑
`=−∞

P(X = k, Y = `)

=

∞∑
`=−∞

P(X = k, Y = `)

=

∞∑
`=−∞

pX,Y (k, `).

∴ pX(k) =

∞∑
`=−∞

pX,Y (k, `).

Exercise 30.
Using the facts that∑

k

pX,Y (k, l) = pY (l),
∑
l

pX,Y (k, l) = pX(k),
∑
k

∑
l

pX,Y (k, l) = 1

then
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Cov[X,Y ] =E
[
(x− E[X])(y − E[Y ])

]
=
∑
k

∑
l

(k − E[X])(l − E[Y ])pX,Y (k, l)

=
∑
k

∑
l

(kl − kE[Y ]− lE[X] + E[X]E[Y ])pX,Y (k, l)

=
∑
k

∑
l

klpX,Y (k, l)−
∑
k

∑
l

kE[Y ]pX,Y (k, l) −∑
k

∑
l

lE[X]pX,Y (k, l) +
∑
k

∑
l

E[X]E[Y ])pX,Y (k, l)

=E[XY ]− E[Y ]
∑
k

k
∑
l

pX,Y (k, l) −

E[X]
∑
l

l
∑
k

pX,Y (k, l) + E[X]E[Y ]
∑
k

∑
l

pX,Y (k, l)

=E[XY ]− E[Y ]
∑
k

kpX(k)− E[X]
∑
l

lpY (l) + E[X]E[Y ])

=E[XY ]− E[X]E[Y ]− E[X]E[Y ] + E[X]E[Y ])

=E[XY ]− E[X]E[Y ].

∴ Cov[X,Y ] = E[XY ]− E[X]E[Y ].

Exercise 31.
If X,Y are independent then pX,Y (k, l) = pX(k)pY (l) so

E[XY ] =
∑
k

∑
l

klpX,Y (k, l)

=
∑
k

∑
l

klpX(k)pY (l)

=

∑
k

kpX(k)

∑
l

lpY (l)


=E[X]E[Y ].

And note that

Cov[X,Y ] = E[XY ]− E[X]E[Y ] = E[X]E[Y ]− E[X]E[Y ] = 0

∴ X,Y independent ⇒ E[XY ] = E[X]E[Y ] and Cov[X,Y ] = 0.
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Exercise 32.
Part 1.
Take

pX,Y (x, y) =



0.1, x = 1, y = 1

0.1, x = 1, y = 2

0.1, x = 2, y = 1

0.1, x = 2, y = 2

0.1, x = 3, y = 1

0.5, x = 3, y = 2

0, otherwise

.

So therefore

pX(x) =


0.2, x = 1

0.2, x = 2

0.6, x = 3

0, otherwise

, pY (y) =


0.3, y = 1

0.7, y = 2

0, otherwise

.

So to calculate the expectations

⇒ E[X] = 1× 0.2 + 2× 0.2 + 3× 0.6 = 2.4,

⇒ E[Y ] = 1× 0.3 + 2× 0.7 = 1.7,

E[XY ] =1× 1× 0.1 + 1× 2× 0.1 +

2× 1× 0.1 + 2× 2× 0.1 +

3× 1× 0.1 + 3× 2× 0.5

=4.2

⇒ Cov[X,Y ] = E[XY ]− E[X]E[Y ] = 4.2− 2.4× 1.7 = 0.12

∴ Cov[X,Y ] 6= 0

Part 2.
Take

pX,Y (x, y) =



0.1, x = 1, y = 1

0.1, x = 1, y = 2

0.5, x = 2, y = 1

0.1, x = 2, y = 2

0.1, x = 3, y = 1

0.1, x = 3, y = 2

0, otherwise

.
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So therefore

pX(x) =


0.2, x = 1

0.6, x = 2

0.2, x = 3

0, otherwise

, pY (y) =


0.7, y = 1

0.3, y = 2

0, otherwise

.

The variables X and Y are clearly not independent, e.g.

pX,Y (1, 1) = 0.1 6= 0.14 = 0.2× 0.7 = pX(1)pY (1).

So to calculate the expectations

⇒ E[X] = 1× 0.2 + 2× 0.6 + 3× 0.2 = 2,

⇒ E[Y ] = 1× 0.7 + 2× 0.3 = 1.3,

E[XY ] =1× 1× 0.1 + 1× 2× 0.1 +

2× 1× 0.5 + 2× 2× 0.1 +

3× 1× 0.1 + 3× 2× 0.1

=2.6

⇒ Cov[X,Y ] = E[XY ]− E[X]E[Y ] = 2.5− 2× 1.3 = 0

∴ X and Y dependent and Cov[X,Y ] = 0.

Exercise 33.
Given that P(Y = `) > 0 then the conditional probability pX|Y=`(·, `) is well
defined. As it equals

pX|Y=`(·, `) =
P(X = ·, Y = `)

P(Y = `)

then it is always non-negative (P(·) > 0 and the ratio of non-negative numbers
is also non-negative). Also,∑

k

pX|Y=`(k, `) =
∑
k

P(X = k, Y = `)

P(Y = `)

=

∑
k P(X = k, Y = `)

P(Y = `)

=
P(Y = `)

P(Y = `)

= 1.
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∴ pX|Y=`(·, `) ≥ 0 and
∑
k

pX|Y=`(k, `) = 1 so it is a probability mass function.

Exercise 34.
Using the fact that independence implies P(X = ·, Y = `) = P(X = ·)P(Y = `)
then

pX|Y=`(·, `) =
P(X = ·, Y = `)

P(Y = `)

=
P(X = ·)P(Y = `)

P(Y = `)

= P(X = ·)
= pX(·).

∴ If X,Y are independent ⇒ pX|Y=`(·, `) = pX(·).

Exercise 38.
Firstly note that

pX|Y (k, `) =
pX,Y (k, `)

pY (`)
⇒ pX,Y (k, `) = pX|Y (k, `)pY (`).

Also remember that
E[g(Y )] =

∑
`

g(`)pY (`)

for some function g of Y . Then if we consider

g(Y ) = E[h(X)|Y ] =
∑
k

h(k)pX|Y (k, Y )
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then

E[g(Y )] = E[E[h(X)|Y ]]

=
∑
`

g(`)pY (`)

=
∑
`

∑
k

h(k)pX|Y=`(k, `)pY (`)

=
∑
`

∑
k

h(k)pX,Y (k, `)

=
∑
`

∑
k

h(k)pX,Y (k, `)

=
∑
k

h(k)
∑
`

pX,Y (k, `)

=
∑
k

h(k)pX(k)

= E[h(X)].

∴ E[E[h(X)|Y ]] = E[h(X)].

Exercise 41.
Say that X ∼ U[a, b] then

E[X] =

∫ ∞
−∞

xfX(x) dx

=

∫ b

a

x
1

b− a
dx

=
1

b− a

∫ b

a

x dx

=
1

b− a

[
x2

2

]b
a

=
1

b− a
b2 − a2

2

=
(b− a)(b+ a)

2(b− a)

⇒ E[X] =
a+ b

2
.

This makes sense, if numbers are scattered uniformly between a and b then on
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average they would be near the middle of the two points, i.e. (a+ b)/2.

E[X2] =

∫ ∞
−∞

x2fX(x) dx

=

∫ b

a

x2 1

b− a
dx

=
1

b− a

∫ b

x=a

x2 dx

=
1

b− a

[
x3

3

]b
a

=
1

b− a
b3 − a3

3

=
(b− a)(b2 + ab+ a2)

3(b− a)

⇒ E[X2] =
a2 + ab+ b2

3
.

Var[X] = E[X2]− E[X]2

=
a2 + ab+ b2

3
−
(
a+ b

2

)2

=
a2 + ab+ b2

3
− a2 + 2ab+ b2

4

=
4a2 + 4ab+ 4b2 − 3a2 − 6ab− 3b2

12

=
a2 − 2ab+ b2

12

=
(a− b)2

12
.

∴ E[X] =
a+ b

2
and Var[X] =

(a− b)2

12
.

Exercise 42.
Say that X ∼ U[a, b]. Since the support of X is [a, b] then for x < a then
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FX(x) = 0 and for x > b then FX(x) = 1. For x ∈ [a, b] then

FX(x) =

∫ x

−∞
fX(z) dz

=

∫ x

a

1

b− a
dz

=
1

b− a

∫ x

a

dz

=
x− a
b− a

.

In summary,

∴ FX(x) =


0, x < a
x−a
b−a , x ∈ [a, b]

1, x > b

.

Exercise 45.
Say that X ∼ Exp(λ).
Part 1.

∫ ∞
0

fX(x) dx =

∫ ∞
0

λe−λx dx

= λ

∫ ∞
0

e−λx dx

= λ

[
−e−λx

λ

]∞
0

= [1− 0]

= 1.

∴
∫ ∞

0

fX(x) dx = 1.

Part 2.
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E[X] =

∫ ∞
0

xfX(x) dx

=

∫ ∞
0

λxe−λx dx

=
[
−xe−λx

]∞
0

+

∫ ∞
0

e−λx dx

= [0− 0] +

[
−e
−λx

λ

]∞
0

=
1− 0

λ

=
1

λ
.

∴ E[X] =
1

λ
.

Part 3.

E[X2] =

∫ ∞
0

x2fX(x) dx

=

∫ ∞
0

λx2e−λx dx

=
[
−x2e−λx

]∞
0

+

∫ ∞
0

2xe−λx dx

= [0− 0] +
2

λ

∫ ∞
0

λxe−λx dx

=
2

λ
E[X]

=
2

λ2
.

⇒ Var[X] = E[X2]− E[X]2

=
2

λ2
− 1

λ2

=
1

λ2
.

∴ Var[X] =
1

λ2
.
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Exercise 47.
Say that X ∼ Exp(λ). The distribution is memoryless if for all s, t > 0 then

P(X > s+ t|X > t) = P(X > s).

Remember that for all u > 0 then

P(X > u) =

∫ ∞
u

λe−λx dx

= λ

∫ ∞
u

e−λv dx

= λ

[
−e−λx

λ

]∞
u

= e−λu.

So

P(X > s+ t|X > t) =
P(X > s+ t,X > t)

P(X > t)

=
P(X > s+ t)

P(X > t)

=
eλ(s+t)

e−λt

= eλs

= P(X > s).

For any s, t > 0⇒ P(X > s+ t|X > t) = P(X > s).

Exercise 48.
Say that Yi = 1(Xi > α) so

#n{Xi > α} =

n∑
i=1

Yi.

It is clear that Yi
iid∼ Ber(q), and as such have finite mean (E[Yi] = q <∞).

Therefore the SLLN implies that with probability 1

lim
n→∞

1

n

n∑
i=1

Yi = q ⇒ lim
n→∞

#n{Xi > α}
n

= q

∴ lim
n→∞

#n{Xi > α}
n

= q w.p.1.
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Exercise 49.

an = E

[∑n
i=1Xi

n

]

=
1

n
E

 n∑
i=1

Xi


=

1

n

n∑
i=1

E[Xi]

=
1

n
nE[X1] as Xi identically distributed

=
nµ

n
= µ.

b2n = Var

[∑n
i=1Xi

n

]

=
1

n2
Var

 n∑
i=1

Xi


=

1

n2

n∑
i=1

Var[Xi] as Xi independent

=
1

n2
nVar[X1] as Xi identically distributed

=
σ2

n

⇒ bn =
σ√
n
.

∴ an = µ, bn =
σ√
n
.

Exercise 51.
Below is the output for a MATLAB session.

1 >> p = 0.25;
2 >> B = (rand(1,1e4) < p);
3 >> mean(B)
4 ans =
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5 0.2504
6 >> var(B)
7 ans =
8 0.1877

If B Ber(p) then E[B] = p and Var[B] = p(1− p) which for p = 0.25 means

E[B] = 0.25, Var[B] =
3

16
= 0.1875.

So
Ê[B] = 0.2504 ≈ 0.25 = E[B]

and
V̂ar[B] = 0.1877 ≈ 0.1875 = Var[B].

Exercise 52.
For E ∼ Exp(1/2) then FE(x) = 1− e−x/2 so set

1− e−x/2 = u⇒ log(1− u) = −x/2⇒ x = −2 log(1− u)

⇒ F−1
E (u) = −2 log(1− u)

Note that if Ui
iid∼ U(0, 1) then also (1 − Ui)

iid∼ U(0, 1), so the exponential
random variables can be generated by Ei = −2 log(Ui).

1 >> E = -log(rand(1,1e4))/0.5;
2 >> mean(E)
3 ans =
4 2.0076
5 >> var(E)
6 ans =
7 4.1118
8 >> hist(E, max(E));
9 >> title('Histogram of Exp(1/2) r.v.s');

10 >> xlabel('Value'); ylabel('Count');
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If E Exp(λ) then E[B] = λ−1 and Var[B] = λ−2 which for λ = 1/2 means

E[E] = 2, Var[E] = 4.

So
Ê[B] = 2.0076 ≈ 2 = E[B]

and
V̂ar[B] = 4.1118 ≈ 4 = Var[B].

Exercise 53.

1 function X = samplePDF(p)
2 X = find(rand() < cumsum(p), 1);
3 end
4 samples = zeros(1, 1e4);
5 for s=1:1e4
6 samples(s) = samplePDF([0.35, 0.25, 0.1, 0.3]);
7 end
8 freqs=histc(samples,1:4)/1e4
9 0.3456 0.2510 0.1012 0.3022
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So
∴ p̂ = [0.3456, 0.2510, 0.1012, 0.3022].

Exercise 56.
The P to select would be the one with every row being pX(·). This means
P(X(t+ 1) = x|X(t) = ·) = pX(x), so it will have the correct distribution, and
it will be independent as the transitions are independent of the current state.

Exercise 73.
Consider constructing the sets in 2A by looping through each element in Amany
times. At each a ∈ A then one might choose to include a or not include a in
a particular set in the power set (i.e. 2 options for each element in A). This
means the number of different combinations is

2 · 2 · ... · 2 = 2|A|.

∴
∣∣∣2A∣∣∣ = 2|A|.
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