MATH4406 – Assignment 4

Patrick Laub (ID: 42051392)

September 26, 2014

1 Real-world motivation

A simple example of this type of control system is the thermostat for an air-conditioning unit. Once set to a desired temperature, the thermostat must enable and disable the air-conditioning over time to try to meet the set-point.

Consider the case where the thermostat is keeping an expensive server room at the correct temperature; if the temperature becomes too hot or too cold then the equipment could suffer costly damages, or operate inefficiently (hence the large negative rewards in state ±5). Perhaps the other \(r(\cdot, \cdot) \) effects can be explained by additional costs accrued when the unit is swapped between heating and cooling mode.

When the air-conditioning is turned on \((a = 1)\) then the system is likely to cool down. Denote the random states \(X_i \in \{-5, \ldots, 5\} \), corresponding to system temperatures, then the previous statement means

\[
\mathbb{P}(X_{n+1} > X_n | a = 1) \geq \mathbb{P}(X_{n+1} < X_n | a = 1)
\]

and conversely the temperature is likely to drop when the air-condition is turned off \((a = -1)\):

\[
\mathbb{P}(X_{n+1} < X_n | a = -1) \geq \mathbb{P}(X_{n+1} > X_n | a = -1).
\]

2 Expected behaviour of optimal policies

Optimal policies will likely be symmetric about the state 0. For symmetric policies then the selected action in 0 will have no effect on overall system performance (as \(r(0, \cdot) = 0 \)).

When \(\lambda \downarrow 0 \) then this means that future states become increasingly unimportant, and so the optimal policy should try to maximised the one-step expected payoff. If only looking at one-step ahead then a maximising policy should be (ignoring states \(\{-5, 0, 5\} \))

\[
d(s) = \begin{cases}
-1, & s < 0 \\
1, & s > 0
\end{cases}
\]

However when \(\lambda \uparrow 1 \) then the policy should be very conservative; the effects of the distant future are extremely important so the system should do everything it can to stick around \(s = 0 \) (every \(X_i \in \{-5, 5\} \) will have a huge negative cost which should be avoided). A hypothesed optimal policy here is (ignoring states \(\{-5, 0, 5\} \))

\[
d(s) = \begin{cases}
1, & s < 0 \\
-1, & s > 0
\end{cases}
\]

3 Optimal Policies: Discussion and Results

Brute-force enumeration, value iteration and policy iteration were used to solve the MDPs with \(\lambda \in \{0.01, 0.02, \ldots, 0.99\} \). Value iteration used a tolerance value of \(\epsilon = 10^{-9} \). Each of the algorithms gave the same optimal policies (as expected). Fig.1 visually\(^1\) shows the optimal decision to take at every state \(s \) for every discounting factor \(\lambda \). The policies with \(\lambda \approx 0 \) and \(\lambda \approx 1 \) match the expected/intuitive optimal policies outlined in Section 2.

\(^1\)If a table is required, then the code in Section 4.4 constructs a table of the results in the matrix \(dRules \) which can easily be printed.
Optimal decisions for each state and discount factor

Figure 1: Optimal policies
4 Appendix: MATLAB Implementation

4.1 Brute force enumeration

```
function [v, d] = brute_force(lambda)

% Problem data.
S = (-5:5)'; numS = numel(S);

% Generate all decision rules.
allDecRules = allcomb(3, [-1,1], [-1,1], [-1,1], [-1,1], 1, ...
    [-1,1], [-1,1], [-1,1], [-1,1], [-3]);

% Store the maximising value and decision rule so far.
bestV = -Inf .* ones(numS, 1);
bestD = NaN;

% Perform policy evaluation for every decision rule.
for ruleNum = 1:size(allDecRules, 1)
    d = allDecRules(ruleNum, :)';

    % Construct reward and transition vectors.
    rd = S .* d;
    Pd = zeros(numS);
    Pd(1,1) = 0.5; Pd(1,2) = 0.5;
    Pd(end,end) = 0.5; Pd(end,end-1) = 0.5;
    for i = 2:(numS-1)
        Pd(i,i-1) = 0.75 * (d(i) == -1) + 0.25 * (d(i) == 1);
        Pd(i,i+1) = 0.25 * (d(i) == -1) + 0.75 * (d(i) == 1);
    end

    % Compute the value of the MDP.
    v = (eye(numS) - lambda .* Pd) \ rd;

    % Store if better (or as good as) the previous best.
    if all((v - bestV) >= 0)
        bestV = v;
        bestD = d;
    end
end
v = bestV; d = bestD;
```
4.2 Value iteration

```matlab
function [v, d] = value_iteration(lambda)

% Problem data.
S = (-5:5)'; numS = numel(S);
eps = 1e-9;

% Start with any guess at the value.
v = zeros(numS, 1);
nextV = zeros(numS, 1);

% Construct decision rule at each step.
d = zeros(numS, 1); d(1) = 3; d(end) = -3; d(S == 0) = 1;

% Iterate over the value space until convergence (or give up).
for iters = 1:1e5
    % For each state compute V^{n+1}(s) from V^n.
    for i = 1:numS
        % Handle edge cases separately to the middle states.
        if i == 1
            nextV(1) = S(1)*3 + lambda*(0.5*v(1) + 0.5*v(2));
        elseif i == numS
            nextV(end) = S(end)*-3 + lambda*(0.5*v(end) + 0.5*v(end-1));
        else
            up = S(i)*1 + lambda*(0.25*v(i-1) + 0.75*v(i+1));
            down = S(i)*-1 + lambda*(0.75*v(i-1) + 0.25*v(i+1));
        end
        nextV(i) = up; d(i) = 1;
    end
    nextV(i) = down; d(i) = -1;
end

% Check for convergence.
if all(abs(nextV - v) < eps*(1-lambda)/(2*lambda))
    v = nextV;
    break;
end
v = nextV;

if iters == 1e5
    warning('Did not converge!');
end
```

4.3 Policy iteration

```matlab
function [v, d] = policy_iteration(lambda)
% Problem data.
S = (-5:5)'; numS = numel(S);
% Start with any guess decision rule.
d = ones(numS, 1); d(1) = 3; d(end) = -3;
nextD = d;
% Construct decision rule at each step.
for iters = 1:1e5
  % Construct reward and transition vectors.
  rd = S .* d;
  Pd = zeros(numS);
  Pd(1,1) = 0.5; Pd(1,2) = 0.5;
  Pd(end,end) = 0.5; Pd(end,end-1) = 0.5;
  for i = 2:(numS-1)
    Pd(i,i-1) = 0.75 * (d(i) == -1) + 0.25 * (d(i) == 1);
    Pd(i,i+1) = 0.25 * (d(i) == -1) + 0.75 * (d(i) == 1);
  end
  % Do policy evaluation.
  v = (eye(numS) - lambda .* Pd) \ rd;
  % Do policy improvement.
  for i = 1:numS
    if any(S(i) == [-5, 0, 5]), continue; end;
    up = S(i)*1 + lambda*(0.25*v(i-1) + 0.75*v(i+1));
    down = S(i)*-1 + lambda*(0.75*v(i-1) + 0.25*v(i+1));
    if up >= down
      nextD(i) = 1;
    else
      nextD(i) = -1;
    end
  end
  % If the decision rule has converged then stop iterating.
  if all(nextD == d)
    break;
  end
  d = nextD;
end
if iters == 1e5
  warning('Did not converge!');
end
```
4.4 Tests and plotting

dRules = [];
for lambda=0.01:0.01:0.99
 [vb, db] = brute_force(lambda);
 [vv, dv] = value_iteration(lambda);
 [vp, dp] = policy_iteration(lambda);
 if any(db ~= dv) || any(dv ~= dp)
 error('Difference!!');
 end
 dRules = [dRules, db];
end

% Some grid code from: http://stackoverflow.com/questions/8711971
figure(1); clf;

% plot dummy objects
hold on;
for a=[−3, −1, 1, 3]
 plot(1, 1, 'LineWidth', 10, 'Color', [(3−a)/6,(3−a)/6,(3−a)/6]);
end

% Draw large bounding box:
xstart = 0.01−0.01/2; ystart = −5−0.5;
xlen = 0.99; ylen = 11;
rectangle('position', [xstart, ystart, xlen, ylen])
dx = 0.01; dy = 1;
nx = floor(xlen/dx); ny = floor(ylen/dy);
for i = 1:nx
 x = xstart + (i−1)*dx;
 for j = 1:ny
 y = ystart + (j−1)*dy;
 a = dRules(j,i);
 rectangle('position', [x, y, dx, dy], 'FaceColor', [(3−a)/6,(3−a)/6,(3−a)/6]);
 end
end

axis([0.005, 0.994, −5.5, 5.499]);
set(gca,'XTick',0.01:0.01:0.99)
set(gca,'YTick',−15:5)
xlabel('lambda'); ylabel('state');
title('Optimal decisions for each state and discount factor');
rotateXLabels(gca(), 90)
legend('d(s)=−3','d(s)=−1','d(s)=1', 'd(s)=3')