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1 Real-world motivation

A simple example of this type of control system is the thermostat for an air-conditioning unit. Once set to a desired temper-
ature, the thermostat must enable and disable the air-conditioning over time to try to meet the set-point.

Consider the case where the thermostat is keeping an expensive server room at the correct temperature; if the temperature
becomes too hot or too cold then the equipment could suffer costly damages, or operate inefficiently (hence the large negative
rewards in state ±5). Perhaps the other r(·, ·) effects can be explained by additional costs accrued when the unit is swapped
between heating and cooling mode.

When the air-conditioning is turned on (a = 1) then the system is likely to cool down. Denote the random states Xi ∈
{−5, . . . , 5}, corresponding to system temperatures, then the previous statement means

P(Xn+1 > Xn|a = 1) ≥ P(Xn+1 < Xn|a = 1)

and conversely the temperature is likely to drop when the air-condition is turned off (a = −1):

P(Xn+1 < Xn|a = −1) ≥ P(Xn+1 > Xn|a = −1) .

2 Expected behaviour of optimal policies

Optimal policies will likely be symmetric about the state 0. For symmetric policies then the selected action in 0 will have no
effect on overall system performance (as r(0, ·) = 0).

When λ ↓ 0 then this means that future states become increasingly unimportant, and so the optimal policy should try to
maximised the one-step expected payoff. If only looking at one-step ahead then a maximising policy should be (ignoring
states {−5, 0, 5})

d(s) =

{
−1, s < 0

1, s > 0

However when λ ↑ 1 then the policy should be very conservative; the effects of the distant future are extremely important
so the system should do everything it can to stick around s = 0 (every Xt ∈ {−5, 5} will have a huge negative cost which
should be avoided). A hypothesed optimal policy here is (ignoring states {−5, 0, 5})

d(s) =

{
1, s < 0

−1, s > 0

3 Optimal Policies: Discussion and Results

Brute-force enumeration, value iteration and policy iteration were used to solve the MDPs with λ ∈ {0.01, 0.02, . . . , 0.99}.
Value iteration used a tolerance value of ε = 10−9. Each of the algorithms gave the same optimal policies (as expected).
Fig. 1 visually1 shows the optimal decision to take at every state s for every discounting factor λ. The policies with λ ≈ 0
and λ ≈ 1 match the expected/intuitive optimal policies outlined in Section 2.

1If a table is required, then the code in Section 4.4 constructs a table of the results in the matrix dRules which can easily be printed.
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Figure 1: Optimal policies
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4 Appendix: MATLAB Implementation

4.1 Brute force enumeration

1 function [v, d] = brute force(lambda)
2 % Problem data.
3 S = (−5:5)'; numS = numel(S);
4

5 % Generate all decision rules.
6 allDecRules = allcomb(3, [−1,1], [−1,1], [−1,1], [−1,1], 1, ...
7 [−1,1], [−1,1], [−1,1], [−1,1], −3);
8

9 % Store the maximising value and decision rule so far.
10 bestV = −Inf .* ones(numS, 1);
11 bestD = NaN;
12

13 % Perform policy evaluation for every decision rule.
14 for ruleNum = 1:size(allDecRules, 1)
15 d = allDecRules(ruleNum, :)';
16

17 % Construct reward and transition vectors.
18 rd = S .* d;
19 Pd = zeros(numS);
20 Pd(1,1) = 0.5; Pd(1,2) = 0.5;
21 Pd(end,end) = 0.5; Pd(end,end−1) = 0.5;
22 for i = 2:(numS−1)
23 Pd(i,i−1) = 0.75 * (d(i) == −1) + 0.25 * (d(i) == 1);
24 Pd(i,i+1) = 0.25 * (d(i) == −1) + 0.75 * (d(i) == 1);
25 end
26

27 % Compute the value of the MDP.
28 v = (eye(numS) − lambda .* Pd) \ rd;
29

30 % Store if better (or as good as) the previous best.
31 if all((v − bestV) >= 0)
32 bestV = v;
33 bestD = d;
34 end
35 end
36

37 v = bestV; d = bestD;
38 end
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4.2 Value iteration

1 function [v, d] = value iteration(lambda)
2 % Problem data.
3 S = (−5:5)'; numS = numel(S);
4 eps = 1e−9;
5

6 % Start with any guess at the value.
7 v = zeros(numS, 1);
8 nextV = zeros(numS, 1);
9

10 % Construct decision rule at each step.
11 d = zeros(numS, 1); d(1) = 3; d(end) = −3; d(S == 0) = 1;
12

13 % Iterate over the value space until convergence (or give up).
14 for iters = 1:1e5
15 % For each state compute Vˆ(n+1)(s) from Vˆn.
16 for i = 1:numS
17 % Handle edge cases separately to the middle states.
18 if i == 1
19 nextV(1) = S(1)*3 + lambda*(0.5*v(1) + 0.5*v(2));
20 elseif i == numS
21 nextV(end) = S(end)*−3 + lambda*(0.5*v(end) + 0.5*v(end−1));
22 else
23 up = S(i)*1 + lambda*(0.25*v(i−1) + 0.75*v(i+1));
24 down = S(i)*−1 + lambda*(0.75*v(i−1) + 0.25*v(i+1));
25

26 % Take the action which maximises this quantity. Note that
27 % when many maximisers exist, then this will select the
28 % larger one every time.
29 if up >= down
30 nextV(i) = up; d(i) = 1;
31 else
32 nextV(i) = down; d(i) = −1;
33 end
34 end
35 end
36

37 % Check for convergence.
38 if all(abs(nextV − v) < eps*(1−lambda)/(2*lambda))
39 v = nextV;
40 break;
41 end
42

43 v = nextV;
44 end
45

46 if iters == 1e5
47 warning('Did not converge!');
48 end
49 end
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4.3 Policy iteration

1 function [v, d] = policy iteration(lambda)
2 % Problem data.
3 S = (−5:5)'; numS = numel(S);
4

5 % Start with any guess decision rule.
6 d = ones(numS, 1); d(1) = 3; d(end) = −3;
7 nextD = d;
8

9 % Construct decision rule at each step.
10 for iters = 1:1e5
11 % Construct reward and transition vectors.
12 rd = S .* d;
13 Pd = zeros(numS);
14 Pd(1,1) = 0.5; Pd(1,2) = 0.5;
15 Pd(end,end) = 0.5; Pd(end,end−1) = 0.5;
16 for i = 2:(numS−1)
17 Pd(i,i−1) = 0.75 * (d(i) == −1) + 0.25 * (d(i) == 1);
18 Pd(i,i+1) = 0.25 * (d(i) == −1) + 0.75 * (d(i) == 1);
19 end
20

21 % Do policy evalutation.
22 v = (eye(numS) − lambda .* Pd) \ rd;
23

24 % Do policy improvement.
25 for i = 1:numS
26 if any(S(i) == [−5, 0, 5]), continue; end;
27

28 up = S(i)*1 + lambda*(0.25*v(i−1) + 0.75*v(i+1));
29 down = S(i)*−1 + lambda*(0.75*v(i−1) + 0.25*v(i+1));
30 if up >= down
31 nextD(i) = 1;
32 else
33 nextD(i) = −1;
34 end
35 end
36

37 % If the decision rule has converged then stop iterating.
38 if all(nextD == d)
39 break;
40 end
41

42 d = nextD;
43 end
44

45 if iters == 1e5
46 warning('Did not converge!');
47 end
48 end
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4.4 Tests and plotting

1

2 dRules = [];
3

4 for lambda=0.01:0.01:0.99
5

6 [vb, db] = brute force(lambda);
7 [vv, dv] = value iteration(lambda);
8 [vp, dp] = policy iteration(lambda);
9

10 if any(db ˜= dv) | | any(dv ˜= dp)
11 error('Difference!!');
12 end
13

14 dRules = [dRules, db];
15 end
16

17 % Some grid code from: http://stackoverflow.com/questions/8711971
18 figure(1); clf;
19

20 % plot dummy objects
21 hold on;
22 for a=[−3, −1, 1, 3]
23 plot(1, 1, 'LineWidth', 10, 'Color', [(3−a)/6,(3−a)/6,(3−a)/6]);
24 end
25

26 % Draw large bounding box:
27 xstart = 0.01−0.01/2; ystart = −5−0.5;
28 xlen = 0.99; ylen = 11;
29

30 rectangle('position', [xstart, ystart, xlen, ylen])
31 dx = 0.01; dy = 1;
32 nx = floor(xlen/dx); ny = floor(ylen/dy);
33

34 for i = 1:nx
35 x = xstart + (i−1)*dx;
36 for j = 1:ny
37 y = ystart + (j−1)*dy;
38

39 a = dRules(j,i);
40 rectangle('position', [x, y, dx, dy], 'FaceColor', [(3−a)/6,(3−a)/6,(3−a)/6]);
41 end
42 end
43

44 axis([0.005, 0.994, −5.5, 5.499]);
45 set(gca,'XTick',0.01:0.01:0.99)
46 set(gca,'YTick',−5:5)
47 xlabel('lambda'); ylabel('state');
48 title('Optimal decisions for each state and discount factor');
49 rotateXLabels( gca(), 90 )
50 legend('d(s)=−3','d(s)=−1','d(s)=1', 'd(s)=3')
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