MATH4406 — Assignment 4

Patrick Laub (ID: 42051392)
September 26, 2014

1 Real-world motivation

A simple example of this type of control system is the thermostat for an air-conditioning unit. Once set to a desired temper-
ature, the thermostat must enable and disable the air-conditioning over time to try to meet the set-point.

Consider the case where the thermostat is keeping an expensive server room at the correct temperature; if the temperature
becomes too hot or too cold then the equipment could suffer costly damages, or operate inefficiently (hence the large negative
rewards in state £5). Perhaps the other r(-,-) effects can be explained by additional costs accrued when the unit is swapped
between heating and cooling mode.

When the air-conditioning is turned on (¢ = 1) then the system is likely to cool down. Denote the random states X; €
{-5,...,5}, corresponding to system temperatures, then the previous statement means

P(Xn+1 > Xn|a = 1) Z P(Xn-‘,-l < Xn|a = 1)
and conversely the temperature is likely to drop when the air-condition is turned off (a = —1):

P(Xn+1 < Xn|a = *1) Z]P(Xn_t,-l > Xn|(l = 71) .

2 Expected behaviour of optimal policies

Optimal policies will likely be symmetric about the state 0. For symmetric policies then the selected action in 0 will have no
effect on overall system performance (as r(0,-) = 0).

When A | 0 then this means that future states become increasingly unimportant, and so the optimal policy should try to
maximised the one-step expected payoff. If only looking at one-step ahead then a maximising policy should be (ignoring

states {—5,0,5})
-1, <0
d(s) = :
1, s>0
However when A\ 1 1 then the policy should be very conservative; the effects of the distant future are extremely important

so the system should do everything it can to stick around s = 0 (every X; € {—5,5} will have a huge negative cost which
should be avoided). A hypothesed optimal policy here is (ignoring states {—5,0,5})

1, <0

d(s) = {1 s>0

3 Optimal Policies: Discussion and Results

Brute-force enumeration, value iteration and policy iteration were used to solve the MDPs with A € {0.01,0.02,...,0.99}.
Value iteration used a tolerance value of ¢ = 107%. Each of the algorithms gave the same optimal policies (as expected).
Fig. 1 visually! shows the optimal decision to take at every state s for every discounting factor A\. The policies with A ~ 0
and A & 1 match the expected/intuitive optimal policies outlined in Section 2.

1If a table is required, then the code in Section 4.4 constructs a table of the results in the matrix dRules which can easily be printed.

epquwre|

state

10108} JUNOJSIP puUR 81eIS Yoes Jo) suoisioap fewndo

()P mmm
(S)P

(s)p
(s)p

€
T

I-
e

Figure 1: Optimal policies

4 Appendix: MATLAB Implementation

4.1 Brute force enumeration

1 function [v, d] = brute_force (lambda)

2 % Problem data.

3 S = (=5:5)'; numS = numel (S);

4

5 % Generate all decision rules.

6 allDecRules = allcomb (3, [—1,1], [-1,11, [-—1,1]1, [-—1,1],
7 (-1,11, [-1,1], [-1,1], [-1,11, =3);

8

9 % Store the maximising value and decision rule so far.
10 bestV = —Inf .x ones(numS, 1);

11 bestD = NaN;

12

13 % Perform policy evaluation for every decision rule.

14 for ruleNum = l:size(allDecRules, 1)

15 d = allDecRules (ruleNum, :)';

16

17 % Construct reward and transition vectors.

18 rd = S .*x d;

19 Pd = zeros (numS);

20 Pd(1,1) = 0.5; Pd(1,2) = 0.5;

21 Pd(end,end) = 0.5; Pd(end,end—1) = 0.5;

22 for 1 = 2: (numS—1)

23 Pd(i,i—=1) = 0.75 % (d(i) == —=1) + 0.25 x (d(i) ==
24 d(i,i+l) = 0.25 % (d(i) == —1) + 0.75 * (d(i) =
25 end

26

27 % Compute the value of the MDP.

28 v = (eye(numS) — lambda .x* Pd) \ rd;

29

30 % Store if better (or as good as) the previous best.
31 if all((v — bestV) >= 0)

32 bestV = v;

33 bestD = d;

34 end

35 end

36

37 v = bestV; d = bestD;

38 end

1,

1);
1);

4.2 Value iteration

© 0 N O U A W N e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

function [v, d] = value_iteration (lambda)

% Problem data.
S = (=5:5)'"; numS = numel (S);
eps = le—9;

% Start with any guess at the wvalue.
v = zeros (numS, 1);
nextV = zeros (numS, 1);

% Construct decision rule at each step.
d = zeros(numS, 1); d(l) = 3; d(end) = —=3; d(S == 0) = 1;

% Iterate over the value space until convergence (or give up).
for iters = 1:1eb
% For each state compute V~ (n+l) (s) from V'n.

for i = 1l:numS
% Handle edge cases separately to the middle states.
if i ==
nextV(l) = S(1)*3 + lambdax (0.5xv (1) + 0.5%xv(2));
elseif 1 == numS
nextV(end) = S(end)*—3 + lambdax* (0.5xv(end) + 0.5xv(end—1));
else

up = S(i)*1 + lambdax (0.25xv (i—1) + 0.75%v(i+1l));
down = S(i)x—1 + lambdax (0.75xv(i—1) + 0.25%v(i+1));

Take the action which maximises this quantity. Note that
when many maximisers exist, then this will select the
larger one every time.
if up >= down
nextV (i)
else
nextV (i) = down; d(i) = —1;
end
end
end

o° o oe

Il
c
o
o
=
I
.

% Check for convergence.

if all (abs(nextV — v) < epsx*(l—lambda)/ (2xlambda))
v = nextV;
break;

end

v = nextV;
end

if iters == 1leb5
warning ('Did not converge!');
end

4.3 Policy iteration

1 function [v, d] = policy.iteration (lambda)

2 % Problem data.

3 S = (=5:5)'"; numS = numel (S);

4

5 % Start with any guess decision rule.

6 d = ones (numS, 1); d(l) = 3; d(end) = —3;

7 nextD = d;

8

9 % Construct decision rule at each step.

10 for iters = 1:1e5

11 % Construct reward and transition vectors.

12 rd = S .*x d;

13 Pd = zeros (numS);

14 Pd(1,1) = 0.5; Pd(l1,2) = 0.5;

15 Pd(end,end) = 0.5; Pd(end,end—1) = 0.5;

16 for 1 = 2: (numS—1)

17 Pd(i,i—1) = 0.75 % (d(i) == —=1) + 0.25 x (d(i) == 1);
18 Pd(i,i+1) = 0.25 % (d(i) == —1) + 0.75 % (d(i) == 1);
19 end

20

21 % Do policy evalutation.

22 v = (eye(numS) — lambda .* Pd) \ rd;

23

24 % Do policy improvement.

25 for i = 1l:numS

26 if any(S(i) == [-5, 0, 5]), continue; end;

27

28 up = S(i)*1 + lambdax (0.25xv(i—1) + 0.75%v(i+1l));
29 down = S(i)x—1 + lambdax (0.75xv(i—1) + 0.25%v(i+1));
30 if up >= down

31 nextD (i) = 1;

32 else

33 nextD (1) = —1;

34 end

35 end

36

37 % If the decision rule has converged then stop iterating.
38 if all (nextD == d)

39 break;

40 end

41

42 d = nextD;

43 end

44

45 if iters == 1leb5

46 warning ('Did not converge!');

a7 end

48 end

4.4 Tests and plotting

1
2 dRules = [];

3

4 for lambda=0.01:0.01:0.99

5

6 [vb, db] = brute_force (lambda);

7 [vv, dv] = value_iteration (lambda);

8 [vp, dp] = policy.iteration (lambda);

9

10 if any(db "= dv) || any(dv "= dp)

11 error ('Difference!!");

12 end

13

14 dRules = [dRules, db];

15 end

16

17 % Some grid code from: http://stackoverflow.com/questions/8711971
18 figure(l); clf;

19

20 % plot dummy objects

21 hold on;

22 for a=[—-3, —1, 1, 3]

23 plot(l, 1, 'Linewidth', 10, 'Color', [(3—a)/6, (3—a) /6, (3—a)/6]);
24 end

25

26 % Draw large bounding box:

27 xstart = 0.01-0.01/2; ystart = —5-0.5;

28 xlen = 0.99; ylen = 11;

29

30 rectangle('position', [xstart, ystart, xlen, ylen])

31 dx = 0.01; dy = 1;

32 nx = floor(xlen/dx); ny = floor(ylen/dy);

33

34 for i = l:nx

35 x = xstart + (i—1)=xdx;

36 for j = l:ny

37 y = ystart + (3j—1)=xdy;

38

39 a = dRules (j,1);

40 rectangle ('position', [x, y, dx, dyl], 'FaceColor', [(3—a)/6, (3—a)/6,(3—a)/6]1);
41 end

42 end

43

44 axis([0.005, 0.994, —5.5, 5.499]);

45 set(gca, 'XTick',0.01:0.01:0.99)

46 set (gca, 'YTick',—=5:5)

47 xlabel('lambda'); ylabel ('state');

48 title('Optimal decisions for each state and discount factor');
49 rotateXLabels(gca(), 90)

50 legend('d(s)=—3','d(s)=—1","'d(s)=1"', 'd(s)=3")

