
MATH4406 – Assignment 4

Patrick Laub (ID: 42051392)

September 26, 2014

1 Real-world motivation

A simple example of this type of control system is the thermostat for an air-conditioning unit. Once set to a desired temper-
ature, the thermostat must enable and disable the air-conditioning over time to try to meet the set-point.

Consider the case where the thermostat is keeping an expensive server room at the correct temperature; if the temperature
becomes too hot or too cold then the equipment could suffer costly damages, or operate inefficiently (hence the large negative
rewards in state ±5). Perhaps the other r(·, ·) effects can be explained by additional costs accrued when the unit is swapped
between heating and cooling mode.

When the air-conditioning is turned on (a = 1) then the system is likely to cool down. Denote the random states Xi ∈
{−5, . . . , 5}, corresponding to system temperatures, then the previous statement means

P(Xn+1 > Xn|a = 1) ≥ P(Xn+1 < Xn|a = 1)

and conversely the temperature is likely to drop when the air-condition is turned off (a = −1):

P(Xn+1 < Xn|a = −1) ≥ P(Xn+1 > Xn|a = −1) .

2 Expected behaviour of optimal policies

Optimal policies will likely be symmetric about the state 0. For symmetric policies then the selected action in 0 will have no
effect on overall system performance (as r(0, ·) = 0).

When λ ↓ 0 then this means that future states become increasingly unimportant, and so the optimal policy should try to
maximised the one-step expected payoff. If only looking at one-step ahead then a maximising policy should be (ignoring
states {−5, 0, 5})

d(s) =

{
−1, s < 0

1, s > 0

However when λ ↑ 1 then the policy should be very conservative; the effects of the distant future are extremely important
so the system should do everything it can to stick around s = 0 (every Xt ∈ {−5, 5} will have a huge negative cost which
should be avoided). A hypothesed optimal policy here is (ignoring states {−5, 0, 5})

d(s) =

{
1, s < 0

−1, s > 0

3 Optimal Policies: Discussion and Results

Brute-force enumeration, value iteration and policy iteration were used to solve the MDPs with λ ∈ {0.01, 0.02, . . . , 0.99}.
Value iteration used a tolerance value of ε = 10−9. Each of the algorithms gave the same optimal policies (as expected).
Fig. 1 visually1 shows the optimal decision to take at every state s for every discounting factor λ. The policies with λ ≈ 0
and λ ≈ 1 match the expected/intuitive optimal policies outlined in Section 2.

1If a table is required, then the code in Section 4.4 constructs a table of the results in the matrix dRules which can easily be printed.

1

−
5

−
4

−
3

−
2

−
1 0 1 2 3 4 5

lam
bda

state

O
ptim

al decisions for each state and discount factor

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
0.11

0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19

0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33

0.34
0.35
0.36
0.37
0.38
0.39

0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5
0.51
0.52
0.53
0.54
0.55

0.56
0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77

0.78
0.79

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

d(s)=
−

3
d(s)=

−
1

d(s)=
1

d(s)=
3

Figure 1: Optimal policies

2

4 Appendix: MATLAB Implementation

4.1 Brute force enumeration

1 function [v, d] = brute force(lambda)
2 % Problem data.
3 S = (−5:5)'; numS = numel(S);
4

5 % Generate all decision rules.
6 allDecRules = allcomb(3, [−1,1], [−1,1], [−1,1], [−1,1], 1, ...
7 [−1,1], [−1,1], [−1,1], [−1,1], −3);
8

9 % Store the maximising value and decision rule so far.
10 bestV = −Inf .* ones(numS, 1);
11 bestD = NaN;
12

13 % Perform policy evaluation for every decision rule.
14 for ruleNum = 1:size(allDecRules, 1)
15 d = allDecRules(ruleNum, :)';
16

17 % Construct reward and transition vectors.
18 rd = S .* d;
19 Pd = zeros(numS);
20 Pd(1,1) = 0.5; Pd(1,2) = 0.5;
21 Pd(end,end) = 0.5; Pd(end,end−1) = 0.5;
22 for i = 2:(numS−1)
23 Pd(i,i−1) = 0.75 * (d(i) == −1) + 0.25 * (d(i) == 1);
24 Pd(i,i+1) = 0.25 * (d(i) == −1) + 0.75 * (d(i) == 1);
25 end
26

27 % Compute the value of the MDP.
28 v = (eye(numS) − lambda .* Pd) \ rd;
29

30 % Store if better (or as good as) the previous best.
31 if all((v − bestV) >= 0)
32 bestV = v;
33 bestD = d;
34 end
35 end
36

37 v = bestV; d = bestD;
38 end

3

4.2 Value iteration

1 function [v, d] = value iteration(lambda)
2 % Problem data.
3 S = (−5:5)'; numS = numel(S);
4 eps = 1e−9;
5

6 % Start with any guess at the value.
7 v = zeros(numS, 1);
8 nextV = zeros(numS, 1);
9

10 % Construct decision rule at each step.
11 d = zeros(numS, 1); d(1) = 3; d(end) = −3; d(S == 0) = 1;
12

13 % Iterate over the value space until convergence (or give up).
14 for iters = 1:1e5
15 % For each state compute Vˆ(n+1)(s) from Vˆn.
16 for i = 1:numS
17 % Handle edge cases separately to the middle states.
18 if i == 1
19 nextV(1) = S(1)*3 + lambda*(0.5*v(1) + 0.5*v(2));
20 elseif i == numS
21 nextV(end) = S(end)*−3 + lambda*(0.5*v(end) + 0.5*v(end−1));
22 else
23 up = S(i)*1 + lambda*(0.25*v(i−1) + 0.75*v(i+1));
24 down = S(i)*−1 + lambda*(0.75*v(i−1) + 0.25*v(i+1));
25

26 % Take the action which maximises this quantity. Note that
27 % when many maximisers exist, then this will select the
28 % larger one every time.
29 if up >= down
30 nextV(i) = up; d(i) = 1;
31 else
32 nextV(i) = down; d(i) = −1;
33 end
34 end
35 end
36

37 % Check for convergence.
38 if all(abs(nextV − v) < eps*(1−lambda)/(2*lambda))
39 v = nextV;
40 break;
41 end
42

43 v = nextV;
44 end
45

46 if iters == 1e5
47 warning('Did not converge!');
48 end
49 end

4

4.3 Policy iteration

1 function [v, d] = policy iteration(lambda)
2 % Problem data.
3 S = (−5:5)'; numS = numel(S);
4

5 % Start with any guess decision rule.
6 d = ones(numS, 1); d(1) = 3; d(end) = −3;
7 nextD = d;
8

9 % Construct decision rule at each step.
10 for iters = 1:1e5
11 % Construct reward and transition vectors.
12 rd = S .* d;
13 Pd = zeros(numS);
14 Pd(1,1) = 0.5; Pd(1,2) = 0.5;
15 Pd(end,end) = 0.5; Pd(end,end−1) = 0.5;
16 for i = 2:(numS−1)
17 Pd(i,i−1) = 0.75 * (d(i) == −1) + 0.25 * (d(i) == 1);
18 Pd(i,i+1) = 0.25 * (d(i) == −1) + 0.75 * (d(i) == 1);
19 end
20

21 % Do policy evalutation.
22 v = (eye(numS) − lambda .* Pd) \ rd;
23

24 % Do policy improvement.
25 for i = 1:numS
26 if any(S(i) == [−5, 0, 5]), continue; end;
27

28 up = S(i)*1 + lambda*(0.25*v(i−1) + 0.75*v(i+1));
29 down = S(i)*−1 + lambda*(0.75*v(i−1) + 0.25*v(i+1));
30 if up >= down
31 nextD(i) = 1;
32 else
33 nextD(i) = −1;
34 end
35 end
36

37 % If the decision rule has converged then stop iterating.
38 if all(nextD == d)
39 break;
40 end
41

42 d = nextD;
43 end
44

45 if iters == 1e5
46 warning('Did not converge!');
47 end
48 end

5

4.4 Tests and plotting

1

2 dRules = [];
3

4 for lambda=0.01:0.01:0.99
5

6 [vb, db] = brute force(lambda);
7 [vv, dv] = value iteration(lambda);
8 [vp, dp] = policy iteration(lambda);
9

10 if any(db ˜= dv) | | any(dv ˜= dp)
11 error('Difference!!');
12 end
13

14 dRules = [dRules, db];
15 end
16

17 % Some grid code from: http://stackoverflow.com/questions/8711971
18 figure(1); clf;
19

20 % plot dummy objects
21 hold on;
22 for a=[−3, −1, 1, 3]
23 plot(1, 1, 'LineWidth', 10, 'Color', [(3−a)/6,(3−a)/6,(3−a)/6]);
24 end
25

26 % Draw large bounding box:
27 xstart = 0.01−0.01/2; ystart = −5−0.5;
28 xlen = 0.99; ylen = 11;
29

30 rectangle('position', [xstart, ystart, xlen, ylen])
31 dx = 0.01; dy = 1;
32 nx = floor(xlen/dx); ny = floor(ylen/dy);
33

34 for i = 1:nx
35 x = xstart + (i−1)*dx;
36 for j = 1:ny
37 y = ystart + (j−1)*dy;
38

39 a = dRules(j,i);
40 rectangle('position', [x, y, dx, dy], 'FaceColor', [(3−a)/6,(3−a)/6,(3−a)/6]);
41 end
42 end
43

44 axis([0.005, 0.994, −5.5, 5.499]);
45 set(gca,'XTick',0.01:0.01:0.99)
46 set(gca,'YTick',−5:5)
47 xlabel('lambda'); ylabel('state');
48 title('Optimal decisions for each state and discount factor');
49 rotateXLabels(gca(), 90)
50 legend('d(s)=−3','d(s)=−1','d(s)=1', 'd(s)=3')

6

