
MATH4406 – Assignment 5∗

Patrick Laub (ID: 42051392)

October 7, 2014

1 The machine replacement model

1.1 Real-world motivation

Consider the machine to be the entire world. Over time the creator has running costs — forgiving
sinners and such — or it can call judgment day sending everyone up or down (with cost R of effort
and paperwork involved) then start over again with a new world. The state of the world i ∈ S is
the number of sins committed in each year, and the world moves randomly over S = {0, 1, . . . } but
in generate trends upwards (due to the general increasing trend of wickedness and population/sinner
growth). To be explicit: R = 1 day (i.e. it days an entire day to judge everybody), C(i) = 10−100i
(assuming 10−100 days per prayer answered), and say Ti ∼ TN(1000i, 1000) (where TN is truncated
normal (since everything is normal), scaled and discretized to match the support S), i.e.

Pi,j ∝ exp

{
− (j − 1000i)2

2× 10002

}
.

1.2 Stochastic ordering

This makes sense as machines are, on the whole, expected to deteriorate over time. Even though there
may be local fluctuations (e.g. my computer may work slightly better today than it did yesterday) the
overall trend is into hopeless machine oblivion.

1.3 Markov decision process

Discount factor:
λ ∈ (0, 1) .

State space:
S = {0, 1, . . . } .

Action set:
∀s ∈ S As = {0, 1} .

Transition probabilities:

p(j | s, a) =

1 , j = 0, s ∈ S, a = 1,

Ps,j , j, s ∈ S, a = 0

0 , otherwise

.

Rewards:

r(s, a) =

{
−C(s) , s ∈ S, a = 0

−C(s)−R , s ∈ S, a = 1
.

∗I call false advertising on the naming of these as “homework”!

1

Objective: for all s ∈ S then (using Xt, Yt as per notes)

min
π∈ΠMS

Eπs

 ∞∑
t=1

λt−1r(Xt, Yt)

 .
1.4 Optimality equation

Equation (6.2.2) is, ∀i ∈ S,

v(i) = sup
a∈Ai

r(i, a) +
∑
j∈S

λ p(j | i, a) v(j)

 . (1)

As our action sets are finite the supremum is achieved,

v(i) = max
a∈{0,1}

r(i, a) +
∑
j∈S

λ p(j | i, a) v(j)

 .

However our rewards are negative, so this is equivalent to the following (using the minimisation criterion)

v(i) = min
a∈{0,1}

−r(i, a) +
∑
j∈S

λ p(j | i, a) v(j)

= min

C(i) +R+ λv(0) , C(i) +

∞∑
j=0

λPi,j v(j)

= C(i) + min

R+ λv(0) , λ

∞∑
j=0

Pi,j v(j)

 .

1.5 Optimality equation increasing

Lemma: The (intermediate) values functions vn(·) created by value iteration algorithm — starting with
v0(i) = C(i) — are all increasing functions.

Proof: Show by induction. At n = 0 then v0(i) = C(i) is increasing by assumption in the given problem.

Assume at step k ≥ 0 then vk(·) is an increasing function, and consider step k + 1. Take any s, t ∈ S
with s < t then look at the sign of

vk+1(t)−vk+1(s) = C(t)+min{R+λvk(0) , λ

∞∑
j=0

Pt,jv
k(j)}−C(s)−min{R+λvk(0) , λ

∞∑
j=0

Ps,jv
k(j)} .

To show that vk+1(·) is increasing, i.e. that vk+1(t)− vk+1(s) > 0, then it will be demonstrated that

C(t)− C(s)︸ ︷︷ ︸
>0

+

≥0︷ ︸︸ ︷
min{R+ λvk(0) , λ

∞∑
j=0

Pt,jv
k(j)} −min{R+ λvk(0) , λ

∞∑
j=0

Ps,jv
k(j)} . (2)

2

The first equality is true by the assumption of the problem (i.e. C(·) is increasing, as noted earlier). To
show the second inequality is true then consider the general problem of showing min{a, b}−min{c, d} ≥ 0
for any a, b, c, d ∈ R. One approach is to show that for every element in the first set, there exists an
element in the second which is not larger, i.e.

(a ≥ c ∨ a ≥ d) ∧ (b ≥ c ∨ b ≥ d)⇒ min{a, b} ≥ min{c, d} ⇔ min{a, b} −min{c, d} ≥ 0.

To apply this argument to the second inequality of (2) then it needs to be shown that

(
R+ λvk(0) ≥ R+ λvk(0)

)
∨
(
R+ λvk(0) ≥ λ

∞∑
j=0

Ps,jv
k(j)

)
(3)

and (
λ

∞∑
j=0

Pt,jv
k(j) ≥ R+ λvk(0)

)
∨
(
λ

∞∑
j=0

Pt,jv
k(j) ≥ λ

∞∑
j=0

Ps,jv
k(j)

)
. (4)

Statement (3) is trivially true by the first logical statement (x ≥ x always!). Next (4) will be shown true
by proving the second logical statement. Say that Ts and Tt are defined as per the question description
(i.e. as the random next state visited after being in states s and t resp.), then

∞∑
j=0

Pt,jv
k(j) = E[vk(Tt)] and

∞∑
j=0

Ps,jv
k(j) = E[vk(Ts)] .

As vk(·) is an increasing function — this is the inductive assumption — then we have that E[vk(Tt)] ≥
E[vk(Ts)] due to the stochastic ordering induced by P . So

λ

∞∑
j=0

Pt,jv
k(j)− λ

∞∑
j=0

Ps,jv
k(j) = λ

(
E[vk(Tt)]− E[vk(Tt)]

)
≥ 0 .

⇒ vk(·) is an increasing function implies that vk+1(·) is an increasing function.

∴ For all n ∈ N0 then vn(·) is an increasing function.

Corollary: v(·) (i.e. the solution to (1)) is an increasing function.

Remember that value iteration converges to the true value function, i.e.

lim
n→∞

vn(·) = v∗λ(·)

and the left-hand side is a sequence of increasing functions (by the lemma) so therefore v∗λ(·) is also an
increasing function. Since value iteration converges to an optimal policy then v∗λ(·) is a solution to (1))
hence v(·) is an increasing function.

1.6 Optimal policy

The optimality equation derived earlier was

v(i) = C(i) + min

R+ λv(0) , λ

∞∑
j=0

Pi,j v(j)

3

and hence the optimal policy satisfies

d(i) ∈ arg min
a∈{0,1}

C(i) +

λ ∞∑
j=0

Pi,j v(j)

︸ ︷︷ ︸

=f(i)

1(a = 0) +

=κ︷ ︸︸ ︷(
R+ λv(0)

)
1(a = 1)

∈ arg min

a∈{0,1}

{
f(i)1(a = 0) + κ1(a = 1)

}
where κ ∈ R and f : S → R. As done earlier, f(i) can be rewritten as f(i) = λE[v(Ti)]. Since v(·)
is an increasing function (from previous corollary) then the stochastic ordering applies, so E[v(Ti)] ≤
E[v(Ti+1)], hence for i, j ∈ S then

i < j ⇒ f(i) ≤ f(j) .

As f(·) is non-decreasing and κ is constant then this leaves three cases:

1. f(·) ≤ κ always,

2. f(·) ≤ κ up until some point then afterwards f(·) ≥ κ,

3. f(·) ≥ κ always.

A succinct summary is to say ∃ ī ∈ S ∪ {∞} such that

i < ī⇒ f(·) ≤ κ, i ≥ ī⇒ f(·) ≥ κ .

Hence the optimal policy is

d(i) =

{
0, i < ī

1, i ≥ ī

i.e. that the machine is only replaced when in states i ≥ ī.

1.7 Never replace policy

A somewhat trivial case were ī = ∞ (which corresponds to the optimal policy of never replacing the
machine) is when R =∞. If f(i) is always finite and R infinite then d(i) = 0 for all i ∈ S.

1.8 Algorithm to find replacement point

Consider a sequence of restricted state spaces s1, s2, . . . where si = {0, 1, . . . , 10i}. Use policy iteration
on each of these finite MDPs to get optimal policies d∗i : si → {0, 1} until some ī = min{s : d∗i (s) = 1}
exists. If si gets too large before d∗i (s) = 1 occurs then estimate ī =∞.

2 Contraction mappings and rates of convergence

2.1 Rates of convergence of value iteration

Definition: Say V is the set of bounded real valued functioned on S with componentwise partial order

and norm ||v|| def
= sups∈S |v(s)|.

Nomenclature: Say that for v ∈ V that ||v − v∗λ|| is the error of v.

Theorem 6.3.3.:1 Let v0 ∈ V and let {vn} denote the iterates of value iteration. Then the following
global convergence rate properties hold for the value iteration algorithm :

1All text in italics are my additions/explanations, the rest is a direct copy of the theorem statement.

4

a) convergence is linear at rate λ, i.e. for each n = 0, 1, . . . then∣∣∣∣vn+1 − v∗λ
∣∣∣∣ ≤ λ ∣∣∣∣vn − v∗λ∣∣∣∣ ,

Meaning: the error at step n + 1 is decreasing linearly at rate λ. E.g. say λ = 0.5 then the error
of vn+1 is no greater than half the error of vn.

b) its asymptotic average rate of convergence equals λ, i.e.

lim sup
n→∞

[∣∣∣∣vn − v∗λ∣∣∣∣∣∣∣∣v0 − v∗λ
∣∣∣∣
]1/n

= λ ,

Meaning: for any ε > 0 there exists an N such that, for n ≥ N ,∣∣∣∣vn − v∗λ∣∣∣∣ ≤ (λ+ ε)n
∣∣∣∣v0 − v∗λ

∣∣∣∣ .
Say we wish to know the number of iterations n required to reduce the error of the n-th step (i.e.
||vn − v∗λ||) by a fraction φ of the initial error (i.e. ||v0 − v∗λ||). Then n ≈ log(φ)/ log(λ).

c) it converges O(λn), i.e.

lim sup
n→∞

∣∣∣∣vn − v∗λ∣∣∣∣
λn

<∞ ,

Meaning: the error of vn converges geometrically, with rate λ, to v∗λ.

d) for all n ∣∣∣∣vn − v∗λ∣∣∣∣ ≤ λn

1− λ
∣∣∣∣v1 − v0

∣∣∣∣ ,
Meaning: The result considers the n-th value iterate vn and gives an upper bound to its error.

e) for any dn ∈ arg maxd∈D{rd + λPdv
n},∣∣∣∣∣∣v(dn)∞

λ − v∗λ
∣∣∣∣∣∣ ≤ 2λn

1− λ
∣∣∣∣v1 − v0

∣∣∣∣ .
Meaning: An optimal decision rule (i.e. optimal stationary policy) is constructed by

d∗ ∈ arg max
d∈D

{rd + λPdv
∗
λ}

and so the decision rule dn constructed by

dn ∈ arg max
d∈D

{rd + λPdv
n}

can be seen as the n-th approximation to the optimal decision rule. Policy evaluation for this

stationary policy will give a value v
(dn)∞

λ which is different from the value iterate vn that generated

it. This statement says the error of v
(dn)∞

λ cannot be greater than double the error of vn.

2.2 Proof

a) For any v0 ∈ V , the iterates of value iteration satisfy∣∣∣∣vn+1 − v∗λ
∣∣∣∣ =

∣∣∣∣Lvn − Lv∗λ∣∣∣∣ ≤ λ ∣∣∣∣vn − v∗λ∣∣∣∣ . (5)

This means that value iteration converges linearly with rate no greater than λ, but is this bound
achievable? If one chooses a sequence starting with v0 as given below, then the upper bound is

5

attained.

Let e ∈ V is the unit function, i.e. e(s) = 1, ∀s ∈ S. Choosing v0 = v∗λ + ke, where k ∈ R \ {0},
gives

v1 − v∗λ = λ(v0 − v∗λ) .

Thus for this sequence, (5) holds with equality.

∴ Value iteration converges linearly at rate λ .

b) Iterating (5) gives, for n = 1, . . . , that

⇒
∣∣∣∣vn − v∗λ∣∣∣∣ ≤ λn ∣∣∣∣v0 − v∗λ

∣∣∣∣ , (6)

⇒
∣∣∣∣vn − v∗λ∣∣∣∣∣∣∣∣v0 − v∗λ

∣∣∣∣ ≤ λn ,
⇒

[∣∣∣∣vn − v∗λ∣∣∣∣∣∣∣∣v0 − v∗λ
∣∣∣∣
]1/n

≤ λ .

As this holds for all n then it also holds for the lim sup of the sequence:

lim sup
n→∞

[∣∣∣∣vn − v∗λ∣∣∣∣∣∣∣∣v0 − v∗λ
∣∣∣∣
]1/n

= lim
n→∞

sup
m≥n

[∣∣∣∣vn − v∗λ∣∣∣∣∣∣∣∣v0 − v∗λ

∣∣∣∣
]1/m

 ≤ lim
n→∞

λ = λ.

⇒ lim sup
n→∞

[∣∣∣∣vn − v∗λ∣∣∣∣∣∣∣∣v0 − v∗λ
∣∣∣∣
]1/n

≤ λ .

That equality holds follows by again choosing v0 = v∗λ + ke.

∴ The asymptotic average rate of convergence equals λ .

c) Returning to (6) and dividing by λn gives∣∣∣∣vn − v∗λ∣∣∣∣
λn

≤
∣∣∣∣v0 − v∗λ

∣∣∣∣ .
Choosing v0 = v∗λ + ke as above shows that equality holds.

∴ Value iteration converges O(λn).

d) From a) we have that∣∣∣∣vn − v∗λ∣∣∣∣ ≤ λ ∣∣∣∣vn−1 − v∗λ
∣∣∣∣ = λ

∣∣∣∣vn−1 − vn + vn − v∗λ
∣∣∣∣ ,

and by the triangle inequality∣∣∣∣vn − v∗λ∣∣∣∣ ≤ λ ∣∣∣∣vn − v∗λ∣∣∣∣+ λ
∣∣∣∣vn − vn−1

∣∣∣∣ ,
⇒
∣∣∣∣vn − v∗λ∣∣∣∣(1− λ) ≤ λ

∣∣∣∣vn − vn−1
∣∣∣∣ ,

6

⇒
∣∣∣∣vn − v∗λ∣∣∣∣ ≤ λ

1− λ
∣∣∣∣vn − vn−1

∣∣∣∣ , (7)

Note that ∣∣∣∣vn − vn−1
∣∣∣∣ =

∣∣∣∣Lvn−1 − Lvn−2
∣∣∣∣ ≤ λ∣∣∣∣vn−1 − vn−2

∣∣∣∣
and iterating this (i.e. using the contraction mapping property many times) gives∣∣∣∣vn − vn−1

∣∣∣∣ ≤ λn−1
∣∣∣∣v1 − v0

∣∣∣∣ . (8)

Substituting (8) into (7) gives the result

∴
∣∣∣∣vn − v∗λ∣∣∣∣ ≤ λn

1− λ
∣∣∣∣v1 − v0

∣∣∣∣ .
e) First a lemma will be proved in order to complete this larger proof.

Lemma: ∣∣∣∣∣∣v(dn)∞

λ − vn
∣∣∣∣∣∣ ≤ λn

1− λ
∣∣∣∣v1 − v0

∣∣∣∣ .
Proof: Again using the triangle inequality∣∣∣∣∣∣v(dn)∞

λ − vn
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣v(dn)∞

λ − Lvn
∣∣∣∣∣∣+

∣∣∣∣∣∣Lvn − vn∣∣∣∣∣∣ .
Theorem 6.2.5 tells us that v

(dn)∞

λ is a (actually the unique) fixed point of L(dn)∞ ; i.e. v
(dn)∞

λ =

L(dn)∞v
(dn)∞

λ . Also Lvn = L(dn)∞v
n by the fact that dn was chosen to maximise the policy

evaluation step. So substituting these statements (and vn = Lvn−1) into the last inequality gives:∣∣∣∣∣∣v(dn)∞

λ − vn
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣L(dn)∞v

(dn)∞

λ − L(dn)∞v
n
∣∣∣∣∣∣+

∣∣∣∣∣∣Lvn − Lvn−1
∣∣∣∣∣∣

≤ λ
∣∣∣∣∣∣v(dn)∞

λ − vn
∣∣∣∣∣∣+ λ

∣∣∣∣∣∣vn − vn−1
∣∣∣∣∣∣ .

Collecting terms:

⇒
∣∣∣∣∣∣v(dn)∞

λ − vn
∣∣∣∣∣∣(1− λ) ≤ λ

∣∣∣∣∣∣vn − vn−1
∣∣∣∣∣∣ .

The right-hand side is bounded by (8) so∣∣∣∣∣∣v(dn)∞

λ − vn
∣∣∣∣∣∣(1− λ) ≤ λλn−1

∣∣∣∣v1 − v0
∣∣∣∣

∴
∣∣∣∣∣∣v(dn)∞

λ − vn
∣∣∣∣∣∣ ≤ λn

1− λ
∣∣∣∣v1 − v0

∣∣∣∣ .
RTP: ∣∣∣∣∣∣v(dn)∞

λ − v∗λ
∣∣∣∣∣∣ ≤ 2λn

1− λ
∣∣∣∣v1 − v0

∣∣∣∣ .
Proof: Using the triangle inequality, the previous lemma, and d):∣∣∣∣∣∣v(dn)∞

λ − v∗λ
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣v(dn)∞

λ − vn
∣∣∣∣∣∣+

∣∣∣∣∣∣vn − v∗λ∣∣∣∣∣∣
≤ λn

1− λ
∣∣∣∣v1 − v0

∣∣∣∣+
λn

1− λ
∣∣∣∣v1 − v0

∣∣∣∣
∴
∣∣∣∣∣∣v(dn)∞

λ − v∗λ
∣∣∣∣∣∣ ≤ 2λn

1− λ
∣∣∣∣v1 − v0

∣∣∣∣ .

7

2.3 Conditions for policy iteration

Firstly, it must be noted that policy iteration (PI) is not directly applicable to infinite-state or infinite-
action models (modified PI may address this). So consider only finite-state and finite-action MDPs. If
for every s ∈ S then: As is compact and convex, p(j | s, a) is affine in a, and r(s, a) is strictly concave
and twice continuously differentiable in a then PI converges quadratically. In this case PI is preferred
to VI. The conditions arise as PI can be viewed as a form of Newton’s method, which has superlinear
convergence for “nice” problems (something like Lipschitz continuous bla bla).

8

