
MATH4406 - Assignment 3

Sean Watson - 42613512

1 Inventory Control

The problem done in this section has the following parameters: K = 3, c(u) = u, g(u) = 0, h(u) = u, M = 4,
f(u) = 10u and pj = (1/5, 1/5, 2/5, 1/5, 0). And tables for the expected revenue, transition probabilities
and rewards are given below:

Table 1: Revenue
u F (u)
0 0
1 8
2 14
3 16
4 14

Table 2: rt(s, a)
s a=0 1 2 3 4
0 0 3 7 7 5
1 7 8 8 6 ×
2 12 9 7 × ×
3 13 8 × × ×
4 12 × × × ×

Table 3: pt(j|s, a)
s+a j=0 1 2 3 4

0 1 0 0 0 0
1 4/5 1/5 0 0 0
2 3/5 1/5 1/5 0 0
3 1/5 2/5 1/5 1/5 0
4 0 1/5 2/5 1/5 1/5

Using the same format for the backwards induction as in Puterman:

1. Set t = 5 and u∗5(s) = r5(s) = 0, s = 0, 1, 2, 3, 4.
2. Set t = 4 and

u∗4(s) = max
a∈As

r(s, a) +
∑
j∈S

p(j|s, a)u∗5(s)

 , ∀s ∈ S

1

= max
a∈As

{r(s, a)}

Which gives the values of:

s u∗4(s) A∗s,3
0 7 3
1 8 2
2 12 0
3 13 0
4 12 0

3. Set s = 3 and

u∗3(s) = max
a∈As

{u∗3(s, a)}

Where for example:

u∗3(1, 3) = r(1, 3) + p(0|1, 3)u∗4(0) + p(1|1, 3)u∗4(1) + p(2|1, 3)u∗4(2) + p(3|1, 3)u∗4(3) + p(4|1, 3)u∗4(4)

= 6 + 0× 7 +
1

5
× 8 +

2

5
× 12 +

1

5
× 13 +

1

5
× 12

= 17.4

The table below gives all of the values for u∗3(s, a), u∗3(s) and A∗s,3, No further individual calculations will be
provided since it is assumed that they are unnecessary as long as each value is given.

Table 4: u∗3(s, a)
s a=0 a=1 a=2 a=3 a=4 u∗3(s) A∗s,3
0 7 10.2 15.2 16.6 16.4 16.6 3
1 14.2 16.2 17.6 17.4 × 17.6 2
2 20.2 18.6 18.4 × × 20.2 0
3 22.6 19.4 × × × 22.6 0
4 23.4 × × × × 23.4 0

4. Set t = 2 and continue as previously:

Table 5: u∗2(s, a)
s a=0 a=1 a=2 a=3 a=4 u∗2(s) A∗s,2
0 16.6 19.8 24.52 25.92 25.8 25.92 3
1 23.8 25.52 26.92 26.8 × 26.92 2
2 29.52 27.92 27.8 × × 29.52 0
3 31.92 28.8 × × × 31.92 0
4 32.8 × × × × 32.8 0

5. Set t = 1 and continue as previously:

2

Table 6: u∗1(s, a)
s a=0 a=1 a=2 a=3 a=4 u∗1(s) A∗s,1
0 25.92 29.12 33.84 35.24 35.136 35.24 3
1 33.12 34.84 36.24 36.136 × 36.24 2
2 38.84 37.24 37.136 × × 38.84 0
3 41.24 38.136 × × × 41.24 0
4 42.136 × × × × 42.136 0

6. Since t = 1 stop.

The algorithm yields the expected total reward function v∗4 and the optimal policy π∗ = (d∗1(s), d∗2(s), d∗3(s), d∗4(s))
as shown below. It is important to note that in d∗4(s) both states 0 and 1 had two policies of equal value
though for convenience’s sake it is easiest to consider them as 3 and 2 respectively to give a stationary
policy.

s d∗1(s) d∗2(s) d∗3(s) d∗4(s) v∗4(s)
0 3 3 3 2/3 35.24
1 2 2 2 1/2 36.24
2 0 0 0 0 38.84
3 0 0 0 0 41.24
4 0 0 0 0 42.136

The optimal policy is to order stock up to 3 units if the stock falls below 2 units. It is a stationary (σ,Σ)
policy given by:

d∗(s) =

0 s > 1

2 s = 1

3 s = 0

2 Threshold Policy in inventory control

The Python code for this question can be found in the appendix, it is fully generalised in that given a
probability vector and other parameters it can construct the rewards and transition probabilities before
moving on to the induction itself. It was tested first on the example in the textbook (relevant input is
induct1(4,3,[0.25,0.5,0.25,0],8,1,2,4)) and then the example given in the previous question to ensure that it
was correct.

2.1 10 Threshold Policy Problems

Since it is unclear just how different each problem has to be, each problem varies only by one or two
parameters from the last. N = 15 and g(u) = 0 in all cases.

1. M = 3, pj = (0.25, 0.5, 0.25, 0), f(u) = 8u, h(u) = u, c(u) = 2u, K = 4

2. M = 3, pj = (0.25, 0.5, 0.25, 0), f(u) = 12u, h(u) = u, c(u) = 2u, K = 4

3. M = 3, pj = (0.25, 0.5, 0.25, 0), f(u) = 10u, h(u) = 2u, c(u) = 2u, K = 4

4. M = 3, pj = (0.25, 0.5, 0.25, 0), f(u) = 15u, h(u) = 3u, c(u) = 3u, K = 4

3

5. M = 4, pj = (1/5, 1/5, 2/5, 1/5, 0), f(u) = 12u, h(u) = 2u, c(u) = 3u, K = 4

6. M = 4, pj = (1/5, 1/5, 2/5, 1/5, 0), f(u) = 8u, h(u) = 2u, c(u) = u, K = 6

7. M = 4, pj = (1/5, 1/5, 2/5, 1/5, 0), f(u) = 8u, h(u) = 2u, c(u) = u, K = 2

8. M = 4, pj = (2/5, 0, 2/5, 1/5, 0), f(u) = 12u, h(u) = 2u, c(u) = 2u, K = 2

9. M = 4, pj = (2/5, 0, 2/5, 1/5, 0), f(u) = 6u, h(u) = u, c(u) = 2u, K = 2

10. M = 4, pj = (1/5, 2/5, 0, 2/5, 0), f(u) = 8u, h(u) = 2u, c(u) = u, K = 5

The code was then run for each of these problems, with the additional command to print the optimal policy
choices at each time (see the bottom of the appendix). From this output the following decision rules were
made for each problem, as well as noting the relevant (σ,Σ) policies where if the inventory level falls below
σ we order Σ stock.

Problem 1

d∗15(s) =
{

0 s ∈ S

The following is a (σ,Σ) policy with σ = 1,Σ = 2.

d∗14(s) =

{
0 s > 0

2 s = 0

The following is a (σ,Σ) policy with σ = 1,Σ = 3.

d∗t6=15,14(s) =

{
0 s > 0

3 s = 0

Problem 2

d∗15,14(s) =

{
0 s > 0

2 s = 0

The following is a (σ,Σ) policy with σ = 1,Σ = 3.

d∗t6=15,14(s) =

{
0 s > 0

3 s = 0

Problem 3

d∗15(s) =
{

0 s ∈ S

The following is a (σ,Σ) policy with σ = 1,Σ = 2.

d∗t 6=15(s) =

{
0 s > 0

2 s = 0

Problem 4
The following is a (σ,Σ) policy with σ = 1,Σ = 1.

d∗15(s) =

{
0 s > 0

1 s = 0

4

The following is a (σ,Σ) policy with σ = 1,Σ = 2.

d∗t6=15(s) =

{
0 s > 0

2 s = 0

Problem 5
The following is a (σ,Σ) policy with σ = 1,Σ = 2.

d∗15(s) =

{
0 s > 0

2 s = 0

The following is a (σ,Σ) policy with σ = 2,Σ = 3.

d∗t6=15(s) =

0 s > 1

2 s = 1

3 s = 0

Problem 6

d∗15(s) =
{

0 s ∈ S

The following is a (σ,Σ) policy with σ = 1,Σ = 3.

d∗t6=15(s) =

{
0 s > 0

3 s = 0

Problem 7
The following is a (σ,Σ) policy with σ = 1,Σ = 2.

d∗15(s) =

{
0 s > 0

2 s = 0

The following is a (σ,Σ) policy with σ = 2,Σ = 2.

d∗t6=15(s) =

0 s > 1

1 s = 1

2 s = 0

Problem 8
The following is a (σ,Σ) policy with σ = 1,Σ = 2.

d∗15(s) =

{
0 s > 0

2 s = 0

The following is a (σ,Σ) policy with σ = 2,Σ = 3.

d∗t6=15(s) =

0 s > 1

1 s = 1

2 s = 0

5

Problem 9

d∗15(s) =
{

0 s ∈ S

The following is a (σ,Σ) policy with σ = 1,Σ = 2.

d∗14(s) =

{
0 s > 0

2 s = 0

The following is a (σ,Σ) policy with σ = 2,Σ = 2.

d∗t 6=15,14(s) =

0 s > 1

1 s = 1

2 s = 0

Problem 10

d∗15(s) =
{

0 s ∈ S

The following is a (σ,Σ) policy with σ = 1,Σ = 3.

d∗t6=15(s) =

{
0 s > 0

3 s = 0

Clearly each of these are threshold policies as expected.

2.2 Non-Threshold Policy

A suitable ordering cost for a non-threshold policy would be:

O[a] = K + ca

This revision was added to the code and tested for several different problems to verify that it does result in
non-threshold policies. The resulting optimal decisions are displayed for Problem 8 from the previous question
(parameters were M = 4, pj = (2/5, 0, 2/5, 1/5, 0), f(u) = 12u, h(u) = 2u, c(u) = u, K = 2).

d∗15,14,13(s) =

{
0 s > 3

1 otherwise

d∗t 6=15,14,13(s) =

{
0 s = 4

1 otherwise

Ordering of stock is fairly consistent regardless of the current level, and this is no surprise given the large
increase required to order additional stock. So obviously for any t this is not a threshold policy as there is
no particular level Σ that we order up to.

6

3 Optimal Markov Deterministic Policies

Given that S is finite or countable and As is finite for each s ∈ S then we can show that there exists an a′

such that:

rt(s, a
′) +

∑
j∈S

pt(j|st, a′)u∗t+1(ht, a
′, j) = supa∈Ast

{rt(s, a) +
∑
j∈S

pt(j|st, a)u∗t+1(ht, a, j)}

with u∗t (ht, a
′, j) satisfying the optimality equations:

u∗t (ht) = supa∈As
{rt(st, a) +

∑
j∈S

pt(j|st, a)ut+1(ht, a, j)}

for t = 1, ..., N − 1 and ht = (ht−1, at−1, st) ∈ Ht. With boundary conditions given by:

uN (hN) = rN (sN)

Now we can show that for each t, u∗t (ht) depends on ht only through st through induction. Since u∗N (hN) =
u∗N (hN−1, aN−1, s) = rN (s) for all hN−1 ∈ HN−1 and aN−1 ∈ AsN−1

, u∗N (hN) = u∗N (sN). Assume that the
claim is valid for n = t+ 1, ..., N Then

u∗t (ht) = supa∈Ast
{rt(s, a) +

∑
j∈S

pt(j|st, a)u∗t+1(ht, a, j)}

Which by the induction hypothesis gives

u∗t (ht) = supa∈Ast
{rt(s, a) +

∑
j∈S

pt(j|st, a)u∗t+1(j)}

Since the terms inside the brackets depend on ht only through st, we have proved that u∗t (ht) depends on
ht only through st holds for all t.

Now we can prove that for any ε > 0 there exists an ε-optimal policy which is deterministic and Markov:
First we choose some ε > 0, and let πε = (dε1, d

ε
2, ..., d

ε
N−1) be any policy in ΠMD satisfying

rt(st, d
ε
t(st)) +

∑
j∈S

pt(j|st, dεt(st))u∗t+1(j) +
ε

N − 1
≥ supa∈Ast

{rt(s, a) +
∑
j∈S

pt(j|st, a)u∗t+1(j)}

Then by the claim proved previously, πε satisfies the requirements necessary to be ε-optimal.

Finally we can prove the claim that there must now exist an optimal Markov deterministic policy: first note
that according to Theorem 4.3.3 in the textbook there exists some π∗ = (d∗1, d

∗
2, ..., d

∗
N−1) ∈ ΠMD, which

satisfies

rt(st, d
∗
t (st)) +

∑
j∈S

pt(j|st, d∗t (st))u∗t+1(j) ≥ maxa∈Ast
{rt(s, a) +

∑
j∈S

pt(j|st, a)u∗t+1(j)}

Then π∗ is optimal.

Thus we have proven that when S is finite or countable and As are all finite then there exists a deterministic
Markovian policy which is optimal.

7

4 The Secretary Problem

4.1 Figure 4.6.2

The Python code for this problem can be found in the appendix.

4.2 Page 102 Analysis

The first step of the analysis is to note that as N →∞:

1

τ(N)
+

1

τ(N)
+ · · ·+ 1

N − 1
≈ 1 (1)

This makes logical sense since we pick the largest τ such that equation 1 is greater than 1 so as N becomes
larger the equation goes closer to 1. This can then be simplified to:

N∑
x=τ(N)

1

x
=

1

τ(N)
+

1

τ(N)
+ · · ·+ 1

N − 1

8

≈
∫ N

τ(N)

1

x
dx

≈ [log(x)]
N
τ(N)

≈ log (N)− log (τ(N))

≈ log
(

N

τ(N)

)
≈ 1

So now we can take the log to the other side (note that this only holds for large N):

log

(
N

τ(N)

)
≈ 1

N

τ(N)
≈ e1

τ(N)

N
≈ e−1

τ(N) ≈ Ne−1

4.3 Modified Secretary Problem

An interesting modification of the secretary problem would be to consider the need to hire multiple candidates
(k) and maximise the sum of their value. Obviously this is a much harder problem than the original and
more applicable as it also has uses in online auctions with regards to when to accept a bid. Kleinberg (2005)
proposed a simple algorithm for this problem that worked by taking a random sample m from the binomial
distribution Bin(n, 1/2) and recursively applying the original algorithm for the secretary problem to select
l = bk/2c elements from the first m samples. Then the m candidates are ordered according to their rank
with y1 being the highest. Then resuming sampling, we hire every candidate with a rank higher than yl.
This algorithm was proven to have an expected value of at least (1 − 5√

k
)v where v is the sum of the k

highest ranked candidates.

Robert Kleinberg, A multiple-choice secretary algorithm with applications to online auctions, Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, January 23-25, 2005, Vancouver,
British Columbia

9

A Backward Induction Code

def rt(s,a, O, h, F):

if a == 0:

return F[s] - h*s

else:

return F[s+a] - O[a] - h*(s+a)

def induct1(N,M,p s,f,h,c,k):

nM = range(M+1)

x = values(M,p s,f,h,c,k)

r = x[1]

p = x[0]

assumed g(u) = 0

u = {}; policies = {}
u n star = {}; pol n = {}
for s in nM:

x = {}
for a in nM:

x[r[s,a]] = (s,a)

u n star[s] = max(x)

pol n[s] = x[max(x)]

u[N-1] = u n star

policies[N-1] = pol n

for n in range(N-1)[:0:-1]:

u n = {}
for i in nM:

for a in nM:

u n[i,a] = r[i,a] + sum(u[n+1][b]*p[i+a,b] for b in nM if (i+a)<(M+1))

u n star = {}; pol n = {}
for s in nM:

x = {}
for a in nM:

x[u n[s,a]] = (s,a)

u n star[s] = max(x)

pol n[s] = x[max(x)]

u[n] = u n star

policies[n] = pol n

return u, policies

def values(M,p s,f,h,c,k):

10

nM = range(M+1)

O = {}; p t = {}; F = {}

for a in nM[1:]:

O[a] = k + c*a

for s in nM:

for j in nM:

if j > s:

p t[s,j] = 0

else:

p t[s,j] = p s[s-j]

if sum(p t[s,j] for j in nM) < 1:

p t[s,0] = 1 - sum(p t[s,j] for j in nM[1:])

for u in nM:

if u == 0:

F[u] = 0

else:

F[u] = sum(p t[u,u-i]*f*i for i in range(u+1))

r t = {}
for s in nM:

for a in nM:

if s+a > M:

r t[s,a] = 0

else:

r t[s,a] = rt(s,a, O, h, F)

return p t,r t

a = induct1(15,4,[0.4, 0, 0.4, 0.2, 0],12,2,2,4)

for n in range(14):

print a[1][n+1]

B Secretary Code

This code was used to calculate the actual values for the plots in the Secretary problem, however the plots
themselves were made by copying the results across to excel as I’m currently having issues with Python’s
plotting package.

def sec(N):

r = {}

11

for t in range(N)[1:]:

a = t

s = []

while a < N:

s += [1.0/a]

a += 1

r[t] = sum(s)

best = (5,0) # arbitrary number > 1

for t in range(N)[1:]:

if r[t] >= 1 and r[t] < best[0]:

best = (r[t],t)

return best

res = []

for n in range(51)[1:]:

res.append(sec(n)[1]/float(n))

def probs(N):

u = {}
u[N,1] = 1

u[N,0] = 0

for t in range(N)[:0:-1]:

u[t,0] = 1/float(t+1)*u[t+1,1] + t/float(t+1)*u[t+1,0]

u[t,1] = max(t/float(N), u[t,0])

return u[1,0]

res2 = []

for n in range(51)[1:]:

res2.append(probs(n))

12

