
MATH4406 - Assignment 4

Sean Watson - 42613512

1 Infinite Horizon Discounted MDP

1.1

A potential real-life application of this MDP could be an animal conservation problem where the states
represent the population level of a certain species where we wish to retain numbers at manageable level,
represented by state 0. A negative state would mean fewer/potentially endangered animals with -5 effectively
being extinction. A positive state would mean greater numbers of the species than we want, effectively the
species has become a pest, with state 5 being something like the carrying population of the region. One of
our actions is to cull the population, more likely to reduce numbers but more expensive if the population is
larger. There is potential for an increase in population when we try to cull though as we may miss pregnant
animals or the hunt may be unsuccessful. On the other hand we can choose to add new animals into the
population from outside the system. Obviously this is more likely to increase the population, but there is also
the possibility that the new animals carry some kind of virus with them causing more of the population to die
off. The costs for bringing new animals in may decrease as the population in the system grows because the
species is less likely to be endangered if it is flourishing here. The boundary states are simply the extremes
of these actions with animals costing exorbitant amounts when there are none in the system because of the
issues with establishing a new population. Conversely a huge population is harder to get back under control
so culling is more difficult and thus more expensive.

1.2

Depending on the level of λ the policy would vary since taking steps closer to the centre is costly it is likely
that there would be a threshold policy such that after being a certain distance from 0 we take actions to
move closer once more. If λ is quite low then we are really only looking at short term costs, which means
the actions are more likely to be just to avoid the boundary but otherwise try to increase value. Conversely,
if λ were quite high then we would have a long term goal to minimise costs since the cost on the boundary is
so high and taking risky moves away from the centre is too dangerous over a long time span. So the optimal
policy for λ ≈ 0 would be to move away from 0 and increase short term gains. If λ ≈ 1 we would want to
always move towards 0 in the hope of never hitting the boundary states. Regardless of the value of λ the
optimal policy is always symmetric about 0 due to the symmetry in the problem itself.

1.3 3-7

The Python code used for these questions can all be found in the appendix.

The following table displays the optimal policies for each of the 99 different values of λ. There are ranges
over which different values of λ share the same optimal policy and so these have been given instead of a bulk

1

listing for the sake of conciseness. Note that in the case of the 0 state either action is optimal due to the
symmetry of the problem.

State
Range of λ -5 -4 -3 -2 -1 0 1 2 3 4 5

0.96-0.99 3 1 1 1 1 -1/1 -1 -1 -1 -1 -3
0.93-0.95 3 1 1 1 -1 -1/1 1 -1 -1 -1 -3
0.86-0.92 3 1 1 -1 -1 -1/1 1 1 -1 -1 -3
0.64-0.85 3 1 -1 -1 -1 -1/1 1 1 1 -1 -3
0.01-0.63 3 -1 -1 -1 -1 -1/1 1 1 1 1 -3

As expected these policies are all threshold policies as after moving a certain distance from the centre we
always take actions that are more likely to take us back to the centre. Further as λ increases the decision
rules change from being based on maximising short term gains to minimising long term losses.

2

A Brute Force Evaluation Code

from future import division

import itertools

from numpy import matrix

from numpy import linalg

P = {};
S = [-5,-4,-3,-2,-1,0,1,2,3,4,5]

lamb = 0.95

actions = {}
for s in S:

if s == -5:

P[s,3,-4] = .5

P[s,3,-5] = .5

actions[s] = [3]

elif s == 5:

P[s,-3,4] = .5

P[s,-3,5] = .5

actions[s] = [-3]

else:

P[s,1,s-1] = .25

P[s,1,s+1] = .75

P[s,-1,s-1] = .75

P[s,-1,s+1] = .25

actions[s] = [1,-1]

r = {}
for s in S:

r[s] = [a*s for a in actions[s]]

x = list(itertools.product(S[1:-1], [-1,1]))

y = []

for i in range(len(x))[::2]:

y.append([x[i], x[i+1]])

pol = list(itertools.product(*y))

pols = {}
for p in range(len(pol)):

for q in range(len(pol[0])):

pols[p,pol[p][q][0]] = pol[p][q][1]

3

def printSol(p):

sol = [3]

for s in S[1:-1]:

sol.append(pols[p,s])

sol += [-3]

return sol

def brute(lamb):

V = {}; VS = {}
for p in range(len(pol)):

col. vector for rd

rList = []

for s in S:

if s == 5:

rList.append([-15])

elif s == -5:

rList.append([-15])

else:

rList.append([pols[p,s]*s])

rd = matrix(rList)

make transition matrix

pList = []

for s in S:

if s == 5:

pList.append([0,0,0,0,0,0,0,0,0,0.5,0.5])

elif s == -5:

pList.append([0.5,0.5,0,0,0,0,0,0,0,0,0])

else:

pro = []

for ss in S:

if (s,pols[p,s],ss) in P:

pro.append(P[s,pols[p,s],ss])

else:

pro.append(0)

pList.append(pro)

pd = matrix(pList)

identity matrix

I = matrix([[0 if s != ss else 1 for ss in S] for s in S])

4

#invert matrices

inv = (I - lamb*pd).I

multiply by rewards

V[p] = inv*rd

VS[p] = sum(V[p].tolist()[ss][0] for ss in range(len(S)))

pMax = max(VS, key=VS.get) # optimal policy

due to symmetry just set state 0’s action to 1

final = printSol(pMax)

final[5] = 1

tuple(final)

loop over all the values of lambda

res =

for lamb in [x/100 for x in range(1,100)]:

ans = brute(lamb)

if ans in res:

res[ans] = res[ans] + [lamb]

else:

res[ans] = [lamb]

B Value Iteration Algorithm

This code is written to be included in the same script as the previous Brute Force Evaluation, i.e. the data
manipulations at the start are still required. To loop over the different λ values brute(lamb) is replaced with
valueIter(lamb).

initialise

V = {}
for s in S:

V[s,0] = max(r[s])

def valueIter(lamb):

iterate

n = 1; complete = False

while complete == False:

diff = []; dec = []

for s in S:

L = [[] for a in range(len(r[s]))]

5

for a in range(len(r[s])):

L[a] = r[s][a] + lamb*sum(P[s,actions[s][a],j]*V[j,n-1]

for j in S if (s,actions[s][a],j) in P)

V[s,n]= max(L)

diff.append(abs(V[s,n]-V[s,n-1]))

dec.append(actions[s][L.index(max(L))])

if sum(diff) <= (1-lamb)/(2*lamb)*eps: #14,600 steps needed

complete = True

print dec

else:

n += 1

C Policy Iteration Algorithm

This code is written to be included in the same script as the previous Brute Force Evaluation, i.e. the data
manipulations at the start are still required. To loop over the different λ values brute(lamb) is replaced with
policyIter(lamb).

def evaluate(p, lamb):

rList = []

for s in S:

if s == 5:

rList.append([-15])

elif s == -5:

rList.append([-15])

else:

rList.append([pols[p,s]*s])

rd = matrix(rList)

make transition matrix

pList = []

for s in S:

if s == 5:

pList.append([0,0,0,0,0,0,0,0,0,0.5,0.5])

elif s == -5:

pList.append([0.5,0.5,0,0,0,0,0,0,0,0,0])

else:

pro = []

for ss in S:

if (s,pols[p,s],ss) in P:

6

pro.append(P[s,pols[p,s],ss])

else:

pro.append(0)

pList.append(pro)

pd = matrix(pList)

I = matrix([[0 if s!= ss else 1 for ss in S] for s in S])

return linalg.solve((I-lamb*pd), rd).tolist()

def policyIter(lamb):

1. Initialise

n = 1

new = pol[0]

old = 0

complete = False

2. Evaluate policy

while complete == False:

Vn = evaluate(pol.index(new), lamb)

Vn = [Vn[i][0] for i in range(len(S))]

V = {}
for i in range(len(S)):

V[S[i]] = Vn[i]

3. Policy improvement

old = new

new = []

acts = {}
for s in S[1:-1]: # the boundary states don’t matter since they’re always the same

act = []

for a in range(len(actions[s])):

act.append(r[s][a] + lamb*sum(P[s,actions[s][a],j]*V[j]

for j in S if (s,actions[s][a],j) in P))

d1 = act.index(max(act))

d1 = actions[s][d1]

ensure that if the previous d is amongst the current argmax then it is chosen

if act[0] == act[1]:

ol = printSol(pol.index(old))

d1 = ol[S.index(s)+1]

if in state 0 choose 1 everytime, due to symmetry this doesn’t change anything but avoids cycles

if s == 0:

new.append([s,1])

else:

7

new.append([s,d1])

new = tuple(tuple(new[i]) for i in range(len(new)))

4. if the new policy is equal to the old: stop

if new == old:

complete = True

return tuple(printSol(pol.index(new)))

8

