
MATH4406 CONTROL THEORY: HW4

Stephen Lynch 42674223

September 26, 2014

Question 1

Imagine the following real-life situation. You are driving down an 11-lane super-
highway on the Gold Coast with your trashy girlfriend, who is completely deaf, in
the passenger seat. The 9 lanes in the middle are all underground, and separated by
concrete barriers. At 10km intervals, the road forks and you are forced to move to
the lane on either the right or left. Your girlfriend decides which direction to move,
and she’s fairly unpredictable - half the time she chooses left and half the time right.
However, it’s fairly dark in the tunnels and honey bunny can only communicate with
sign language, so you only actually see her choice half of the time. If you miss her
signal, no worries, you just move outwards from the center since the speed limit
is higher the closer you are to the edge, and you just widened the hole in your
muffler - this makes the car sound cooler when you drive faster. Hence, moving
to an outer lane increases street cred, which is what we would like to maximise.
However, you also just robbed a 7-11 to get a Slurpee for Bonnie, so the police
helicopter is after you. Driving in either of the outermost lanes is extremely costly,
since they’re exposed to the skies, and cages are for birds. Indeed, if you go to jail
your girlfriend will dump you for some guy with a bigger southern cross tattoo, and
someone will steal your custom muffler for sure, which costs -15 for reasons which
are arbitrary. On the bright side, if you’re not in the tunnel then sign language is
suddenly a much more viable form of communication! Your gf chooses to stay in the
outer lane or move inwards with equal probability, and you obey, because the fear
of being cheated on is ever-present... Also, the highway is circular and has no exits,
because the GCCC is too terrified of the bogans who wanted a sick racetrack, so
you have to drive forever. Also, λ describes the laziness of the police on duty that
day - as time wears on, they are more likely to land on the helipad at McDonalds
in Nerang, so the cost of moving to the outer lanes decreases with time.

1



Question 2

Certainly we would expect optimal policies to be symmetric about 0, up to multi-
plication by -1, simply because the reward structure is symmetric. When λ is close
to one, the impact of rewards in the future is negligible, so the optimal policy will
be one of instant gratification - always move outwards. On the other hand, when
λis close to 1, the discounting effect is lessened, so choosing a path that ends up in
an outer lane even in the distant future will be very costly. Hence an optimal policy
should strike some balance between always moving outwards, and staying away from
the endpoints, e.g.

(1, 1,−1,−1, 1, 1, 1,−1,−1)

might be an optimal policy. Here the nine entries correspond to decisions made in
states

(−4,−3,−2,−1, 0, 1, 2, 3, 4).

Question 3

We determined the optimal policy for λ values ranging from 0.01 to 0.99 at inter-
vals of 0.01, using: policy enumeration, value iteration and policy iteration. The
code used to implement these three algorithms is included in the appendix. Each
algorithm gave the same results - these are presented in the table below, and mesh
with our predictions in Question 2:

λ range Optimal policy
0.01 - 0.63 (-1,-1,-1,-1,1,1,1,1,1)
0.64 - 0.85 (1,-1,-1,-1,1,1,1,1,-1)
0.86 - 0.92 (1,1,-1,-1,1,1,1,-1,-1)
0.93 - 0.95 (1,1,1,-1,1,1,-1,-1,-1)
0.96 - 0.99 (1,1,1,1,1,-1,-1,-1,-1)

Notably, whenever λ ≤ 0.6, the optimal policy is to just be greedy and always move
outwards. Above this threshold, we have to be more careful.

Appendix

GENERATING POLICIES:

2



P = dec2bin([0:511].');
policies = zeros(512,9);
for i = [1:512]

for j = [1:9]
policies(i,j) = str2num(P(i,j));

end
end
policies = 2 * policies - 1;

POLICY ENUMERATION CODE:

V max = -inf*ones(1,11);

for policy = policies.'

%%CALCULATE REWARD
reward = [-15 [-4:4].*policy.' -15];

%%CALCULATE TRANSITION MATRIX
P = zeros(11,11);
P(1,:) = [[1/2 1/2] zeros(1,9)];
P(11,:) = [zeros(1,9) [1/2 1/2]];
for i = [2:10]

if policy(i-1) == -1
P(i, i-1) = 3/4;
P(i, i+1) = 1/4;

else
P(i, i-1) = 1/4;
P(i, i+1) = 3/4;

end
end

%%EVALUTATE POLICY
V = ((eye(11) - lambda * P)\reward.').';
if sum(V) > sum(V max)

V max = V;
opt policy = policy.';

end
end

VALUE ITERATION:

lambda = 0.98;
epsilon = 0.01;

V last = epsilon * (1 - lambda) / (lambda)*ones(1,11);
V = zeros(1,11);

3



opt policy = zeros(1,9);

while norm(V - V last) > epsilon * (1 - lambda) / (2 * lambda)
V last = V;
V(1) = -15 + lambda*(V last(1)*1/2 + V last(2)*1/2);
V(11) = -15 + lambda*(V last(11)*1/2 + V last(10)*1/2);
for state = [2:10]

V minus = -(state-6) + lambda*(3/4*V last(state-1) + 1/4*V last(state+1));
V plus = (state-6) + lambda*(1/4*V last(state-1) + 3/4*V last(state+1));
if V minus >= V plus

V(state) = V minus;
else

V(state) = V plus;
end

end
end

for state = [2:10]
V minus = -(state-6) + lambda*(3/4*V(state-1) + 1/4*V(state+1));
V plus = (state-6) + lambda*(1/4*V(state-1) + 3/4*V(state+1));
if V minus >= V plus

opt policy(state-1) = -1;
else

opt policy(state-1) = 1;
end

end

POLICY ITERATION CODE:

opt policy = ones(1,9);
policy prev = zeros(1,9);

reward = [-15 [-4:4] -15];

while sum(opt policy ~= policy prev)>0
policy prev = opt policy;
reward = [-15 policy prev.*[-4:4] -15];

P = zeros(11,11);
P(1,:) = [[1/2 1/2] zeros(1,9)];
P(11,:) = [zeros(1,9) [1/2 1/2]];
for i = [2:10]

if policy prev(i-1) == -1
P(i, i-1) = 3/4;
P(i, i+1) = 1/4;

else
P(i, i-1) = 1/4;
P(i, i+1) = 3/4;

end

4



end

V = (eye(11) - lambda*P)\(reward.');
V p = -inf;

for policy = policies.'
reward = [-15 (policy.').*[-4:4] -15];
P = zeros(11,11);
P(1,:) = [[1/2 1/2] zeros(1,9)];
P(11,:) = [zeros(1,9) [1/2 1/2]];
for i = [2:10]

if policy(i-1) == -1
P(i, i-1) = 3/4;
P(i, i+1) = 1/4;

else
P(i, i-1) = 1/4;
P(i, i+1) = 3/4;

end
end

if sum(reward + lambda*(P*V).') > V p
new policy = policy.';
V p = sum(reward + lambda*(P*V).');

end
end
if sum(V p) > sum(V)

opt policy = new policy;
end

end

5


