
MATH4406 (Control Theory), HW4

Trent Skorka - s42897282

September 26, 2014

1. Think of how this may fit in some applied situation, where your controller is trying to regulate a

system at a “set-point”.

Consider a situation in which there are two equally powerful groups to which you may pledge your support. This

could represent an alliance of companies, an investment of money, time or energy, or an alliance of kingdoms. Let

us consider the example of kingdoms. At each time step (say, each month), you must choose either to increase

your support, or withdraw it. Naturally, your proposal for support (or withdrawal) may be rejected due to poor

actions on your behalf (or very commendable actions - and who can deny the decisions of support from kings?).

The more you pledge support to one group, the greater your reward (aid, protection, financial support), but if

you fully support one group, the other will percieve you as an enemy, and attack (represented by the high cost

incurred at state ±5).

2. What would optimal policies look like? What role does λ play? What do you think the optimal

policy when λ ≈ 0 (but > 0). What do you think is the optimal policy when λ ≈ 1 (but < 1)? State

your reasons clearly.

Optimal policies for this problem will depend on the value of λ - this represents the discounting of future rewards.

It would be preferable not to be in one of the end states, but in the case where λ = 0, future states do not

affect the reward at all, so it would not matter if you actually made it to an end state, as it would not affect the

expected value of the MDP. Thus, for λ ≈ 0, we would expect the optimal policy to be dn = 1 for n = {1, 2, 3, 4}
and dn = −1 for n = {−4,−3,−2,−1, 0}. Note that it does not actually matter what decision is made at state

s = {0}. We arbitrarily set it to be −1.

If λ = 1, all future rewards are not discounted at all, and so it is important to consider the long-term outcome

of your policy. It would thus make sense to move away from the end states as much as possible. However, if

you always attempt to move towards the center state, you will always incur a cost, rather than a reward (as

s < 0, a > 0 ⇒ r < 0, and visa versa). Thus, I would expect the optimal policy for λ ≈ 1 to be dn = 1 for

n = {−4,−3,−2, 1} and dn = −1 for n = {−1, 0, 2, 3, 4}, where again d0 was arbitrarily chosen.

Regardless of the choice of λ, the optimal policy should be symmetric about d0, with of course d5 = {−3} and

d−5 = {3}.

1

3. Write a function that finds the optimal policy by brute force of all (512) policies and solution of

the policy evaluation equations.

For this question, we require the construction of all policies. There are 29 = 512 policies, as for each state in

{−4, . . . , 4}, we have two potential actions. For each of these policies, we wish to solve the equation

vdλ = rd + λPdv
d
λ (1)

This has the solution

vλ = (I − λPd)−1
rd (2)

We then wish to find the policy which gives the maximum value for each state. Each state should produce the

same result, with the exception of the action at s = {0} which is arbitrary as it does gives a reward of 0, and

the problem is symmetric.

The code for this question is given in Appendix A .

4. Write a function that finds the optimal policy using value iteration with specified ε > 0 and a

stopping criterion adapted to λ.

The value iteration algorithm requires an initial v0 ∈ V to be chosen. For simplicity, we arbitrarily set v0 =

{0, . . . , 0}. The algorithm is then run until the condition below is met:

||vn+1 − vn|| < ε(1− λ)

2λ
(3)

Here, ε > 0 is some small constant. Once this condition is met, the policy used to find vn+1 is the optimal policy.

The code for this question is given in Appendix B, where we chose ε = 0.01.

5. Write a function that finds the optimal policy using the policy iteration algorithm.

The policy iteration algorithm obtains vn for each decision rule, d by solving equation (1). It requires an inital

arbitrary decision rule d0 ∈ D to be chosen. For this question, we set d0 = {−3,−1, ...,−1, 3}. The algorithm is

then run until dn+1 = dn, at which point we set d∗ = dn. At each step, we recalculate the transition matrix P ,

and the value of the policy is calculated using equation (2).

The code for this question is given in Appendix C.

6. (Optional) Write a function that finds the optimal policy using linear programming.

– Not Attempted –

2

7. Use 3-6 to find the optimal policy for a range of λ ∈ (0, 1) in steps of 0.01 (ie. run the algorithm

99 times). For the value iteration use a “small enough” epsilon. Present the optimal policies (for

each λ) and briefly comment on the results.

The optimal policy changes at λ = 0.64, 0.86, 0.94 and 0.96. The policies are summarised below, and the code

used is presented in Appendix D. The value iteration algorithm, with ε = 0.01 was used, and no discrepancies

were noted.

State 0.01 ≤ λ ≤ 0.63 0.64 ≤ λ ≤ 0.86 0.87 ≤ λ ≤ 0.93 0.94 ≤ λ ≤ 0.96 0.97 ≤ λ ≤ 0.99

-5 3 3 3 3 3

-4 -1 1 1 1 1

-3 -1 -1 1 1 1

-2 -1 -1 -1 1 1

-1 -1 -1 -1 -1 1

0 -1 -1 -1 -1 -1

1 1 1 1 1 -1

2 1 1 1 -1 -1

3 1 1 -1 -1 -1

4 1 -1 -1 -1 -1

5 -3 -3 -3 -3 -3

The optimal policy for λ ≈ 0 was as expected (refer to Q2), but it is interesting to not how large λ must be

before this policy of always striving for the end states is no longer optimal. Also of interest is λ ≈ 1, namely

0.97 ≤ λ ≤ 0.99. This is not the optimal policy that was predicted, as the policy ensures one will never gain

a positive reward. Thus, for these larger values of λ, the objective would perhaps be better represented as

“minimise the cost”, rather than “maximise the reward”.

Note that the decisions rules are, indeed, symmetric about s = {0}, as expected. As λ increases, it becomes

more preferable to move away from the end states before reaching them, a result of future rewards having more

of an influence.

3

APPENDIX A

Matlab Code for Question 3

4

APPENDIX B

Matlab Code for Question 4

5

APPENDIX C

Matlab Code for Question 5

6

APPENDIX D

Matlab Code for Question 7

7

