1. Think of how this may fit in some applied situation, where your controller is trying to regulate a system at a “set-point”.

Consider a situation in which there are two equally powerful groups to which you may pledge your support. This could represent an alliance of companies, an investment of money, time or energy, or an alliance of kingdoms. Let us consider the example of kingdoms. At each time step (say, each month), you must choose either to increase your support, or withdraw it. Naturally, your proposal for support (or withdrawal) may be rejected due to poor actions on your behalf (or very commendable actions - and who can deny the decisions of support from kings?). The more you pledge support to one group, the greater your reward (aid, protection, financial support), but if you fully support one group, the other will perceive you as an enemy, and attack (represented by the high cost incurred at state ±5).

2. What would optimal policies look like? What role does λ play? What do you think the optimal policy when $\lambda \approx 0$ (but > 0)? What do you think is the optimal policy when $\lambda \approx 1$ (but < 1)? State your reasons clearly.

Optimal policies for this problem will depend on the value of λ - this represents the discounting of future rewards. It would be preferable not to be in one of the end states, but in the case where $\lambda = 0$, future states do not affect the reward at all, so it would not matter if you actually made it to an end state, as it would not affect the expected value of the MDP. Thus, for $\lambda \approx 0$, we would expect the optimal policy to be $d_n = 1$ for $n = \{1, 2, 3, 4\}$ and $d_n = -1$ for $n = \{-4, -3, -2, -1, 0\}$. Note that it does not actually matter what decision is made at state $s = \{0\}$. We arbitrarily set it to be -1.

If $\lambda = 1$, all future rewards are not discounted at all, and so it is important to consider the long-term outcome of your policy. It would thus make sense to move away from the end states as much as possible. However, if you always attempt to move towards the center state, you will always incur a cost, rather than a reward (as $s < 0, a > 0 \Rightarrow r < 0$, and visa versa). Thus, I would expect the optimal policy for $\lambda \approx 1$ to be $d_n = 1$ for $n = \{-4, -3, -2, 1\}$ and $d_n = -1$ for $n = \{-1, 0, 2, 3, 4\}$, where again d_0 was arbitrarily chosen.

Regardless of the choice of λ, the optimal policy should be symmetric about d_0, with of course $d_5 = \{-3\}$ and $d_{-5} = \{3\}$.
3. Write a function that finds the optimal policy by brute force of all (512) policies and solution of the policy evaluation equations.

For this question, we require the construction of all policies. There are $2^9 = 512$ policies, as for each state in $\{-4, \ldots, 4\}$, we have two potential actions. For each of these policies, we wish to solve the equation

$$v^d_\lambda = r_d + \lambda P_d v^d_\lambda$$ (1)

This has the solution

$$v_\lambda = (I - \lambda P_d)^{-1} r_d$$ (2)

We then wish to find the policy which gives the maximum value for each state. Each state should produce the same result, with the exception of the action at $s = \{0\}$ which is arbitrary as it does gives a reward of 0, and the problem is symmetric.

The code for this question is given in Appendix A.

4. Write a function that finds the optimal policy using value iteration with specified $\epsilon > 0$ and a stopping criterion adapted to λ.

The value iteration algorithm requires an initial $v^0 \in V$ to be chosen. For simplicity, we arbitrarily set $v^0 = \{0, \ldots, 0\}$. The algorithm is then run until the condition below is met:

$$||v^{n+1} - v^n|| < \frac{\epsilon(1 - \lambda)}{2\lambda}$$ (3)

Here, $\epsilon > 0$ is some small constant. Once this condition is met, the policy used to find v^{n+1} is the optimal policy.

The code for this question is given in Appendix B, where we chose $\epsilon = 0.01$.

5. Write a function that finds the optimal policy using the policy iteration algorithm.

The policy iteration algorithm obtains v^n for each decision rule, d by solving equation (1). It requires an initial arbitrary decision rule $d_0 \in D$ to be chosen. For this question, we set $d_0 = \{-3, -1, \ldots, -1, 3\}$. The algorithm is then run until $d_{n+1} = d_n$, at which point we set $d^* = d_n$. At each step, we recalculate the transition matrix P, and the value of the policy is calculated using equation (2).

The code for this question is given in Appendix C.

6. (Optional) Write a function that finds the optimal policy using linear programming.

- Not Attempted –
7. Use 3-6 to find the optimal policy for a range of \(\lambda \in (0, 1) \) in steps of 0.01 (ie. run the algorithm 99 times). For the value iteration use a “small enough” epsilon. Present the optimal policies (for each \(\lambda \)) and briefly comment on the results.

The optimal policy changes at \(\lambda = 0.64, 0.86, 0.94 \) and 0.96. The policies are summarised below, and the code used is presented in Appendix D. The value iteration algorithm, with \(\epsilon = 0.01 \) was used, and no discrepancies were noted.

<table>
<thead>
<tr>
<th>State</th>
<th>0.01 (\leq \lambda \leq 0.63)</th>
<th>0.64 (\leq \lambda \leq 0.86)</th>
<th>0.87 (\leq \lambda \leq 0.93)</th>
<th>0.94 (\leq \lambda \leq 0.96)</th>
<th>0.97 (\leq \lambda \leq 0.99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>-4</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-3</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
</tbody>
</table>

The optimal policy for \(\lambda \approx 0 \) was as expected (refer to Q2), but it is interesting to not how large \(\lambda \) must be before this policy of always striving for the end states is no longer optimal. Also of interest is \(\lambda \approx 1 \), namely \(0.97 \leq \lambda \leq 0.99 \). This is not the optimal policy that was predicted, as the policy ensures one will never gain a positive reward. Thus, for these larger values of \(\lambda \), the objective would perhaps be better represented as “minimise the cost”, rather than “maximise the reward”.

Note that the decisions rules are, indeed, symmetric about \(s = \{0\} \), as expected. As \(\lambda \) increases, it becomes more preferable to move away from the end states before reaching them, a result of future rewards having more of an influence.
APPENDIX A

Matlab Code for Question 3

```matlab
1 - clear all
2 - clc
3 -
4 - s=[-5:5];
5 - lambda = 0.1;
6 - epsilon=0.01;
7 -
8 - % Question 3 - Brute Force
9 - Dec=zeros(512,11); %Generate all decisions
10 - k=1;
11 -
12 - for j1=1:2
13 -     for j2=1:2
14 -         for j3=1:2
15 -             for j4=1:2
16 -                 for j5=1:2
17 -                     for j6=1:2
18 -                         for j7=1:2
19 -                             for j8=1:2
20 -                                 for j9=1:2
21 -                                     Dec(k,:)=[s j1 j2 j3 j4 j5 j6 j7 j8 j9];
22 -                                     Dec(Dec==2)=-1;
23 -                                     k=k+1;
24 -                                 end
25 -                             end
26 -                         end
27 -                     end
28 -                 end
29 -             end
30 -         end
31 -     end
32 - end
33 - P=zeros(length(s)); %Create matrix P
34 - P(1,1)=0.5;
35 - P(1,2)=0.5;
36 - P(end,end-1)=0.5;
37 - P(end,end)=0.5;
38 - I=eye(length(s)); %Construct Identity matrix
39 -
40 - for k=1:length(s)
41 -     for j=2:length(s)-1 %Construct P_d for each policy
42 -         if Dec(k,j)==-1
43 -             P(j,j-1)=0.75;
44 -             P(j,j+1)=0.25;
45 -         else
46 -             P(j,j-1)=0.25;
47 -             P(j,j+1)=0.75;
48 -         end
49 -     end
50 -     A=I-lambda.*E; %Find (I-lambda*P)^-1
51 -     reward(k,:)=S.'*Dec(k,:);
52 -     v(k,:)=inv(A)'*reward(k,:); %Policy Evaluation
53 - end
54 - for s=1:length(s)
55 -     [v(s), q(s)]=max([v(:,s)]);
56 - end
57 - Dec(d(3,:)) %Optimal decision rule
```
APPENDIX B
Matlab Code for Question 4

1 - clear all
2 - clc
3 -
4 - S=[-5:5];
5 - lambda = 0.1;
6 - epsilon=0.01;
7 -
8 - \% Question 4 - Value Iteration Policy
9 - d=zeros(size(S))'; \%Create decision vector
10 - d(1)=3;
11 - d(end)=-3;
12 - olvd=zeros(size(S))'; \%Old value
13 - newv=zeros(size(S))'+1; \%New value
14 - \% while norm(newv-olvd)>epsilon*(1-lambda)/(2*lambda) \%Stopping criteria
15 - olvd=newv;
16 - newv(1)=-15+(lambda*0.5*(olvd(1)+olvd(2)));
17 - newv(end)=-15+(lambda*0.5*(olvd(end)+olvd(end-1)));
18 - for s=2:length(S)-1 \%Maximising value over all policies
19 - psminus=zeros(1,length(S));
20 - psminus(s-1)=0.75;
21 - psminus(s+1)=0.25;
22 - psplus=zeros(1,length(S));
23 - psplus(s-1)=0.25;
24 - psplus(s+1)=0.75;
25 - [newv(s),d(s)]=max([-S(s)+lambda*psminus*olvd,S(s)+lambda*psplus*olvd]);
26 - end
27 - d(d==1)=-1; \%Fix decision vector to have correct values
28 - d(d==(-2))=-1;
29 - end
30 - \%Output result
APPENDIX C
Matlab Code for Question 5

```matlab
1 - clear all
2 - clc
3 -
4 - S=[-5:5];
5 - lambda = 0.1;
6 - epsilon=0.01;
7 -
8 - % Question 5 - Policy Iteration Algorithm
9 - old_d=zeros(size(S))'-1; %Old decision rule
10 - old_d(1)=3;
11 - old_d(end)=-3;
12 - new_d=zeros(size(S))'+1; %New decision rule - ensuring different to old_d
13 - new_d(1)=3;
14 - new_d(end)=-3;
15 - P=zeros(length(S)); %Create matrix P
16 - P(1,1)=0.5;
17 - P(1,2)=0.5;
18 - if end(end-1) end
19 - P(end,end-1)=0.5;
20 - P(end,end)=0.5;
21 - I=eye(length(S)); %Construct Identity matrix
22 - while max(new_d==old_d)>0
23 -     old_d=new_d;
24 -     for j=2:length(S)-1 %Construct P_d
25 -         if old_d(j)==-1
26 -             P(j,j-1)=0.75;
27 -             P(j,j+1)=0.25;
28 -         else
29 -             P(j,j-1)=0.25;
30 -             P(j,j+1)=0.75;
31 -         end
32 -     end
33 -     A=I-lambda.*P; %Find (I-lambda*P)^-1
34 -     reward=S.'*old_d;
35 -     v=inv(A)*reward; %Policy Evaluation
36 -     for s=2:length(S)-1 %Policy Improvement
37 -         psminus=zeros(1,length(S));
38 -         psminus(s-1)=0.75;
39 -         psminus(s+1)=0.25;
40 -         psplus=zeros(1,length(S));
41 -         psplus(s-1)=0.25;
42 -         psplus(s+1)=0.75;
43 -         [v(s),new_d(s)]=max([-S(s)+lambda*psminus*v,S(s)+lambda*psplus*v]);
44 -     end
45 -     new_d(new_d==1)=-1; %Fix decision vector to have correct values
46 -     new_d(new_d==-2)=1;
47 - end
48 - new_d %Output optimal policy
```
APPENDIX D
Matlab Code for Question 7

```matlab
1 clc
2 S=[-5:5];
3 lambda = 0.1;
4 epsilon=0.01;
5 % Question 7 - Examination of all policies
6 for Lambda=1:99
7     lambda=Lambda/100;  %0.01 < lambda < 0.99
8     d=zeros(size(S))';
9     d(1)=3;
10    d(end)=-3;
11    oldv=zeros(size(S))';
12    newv=zeros(size(S))'+1;
13    while norm(newv-oldv)>epsilon*(1-lambda)/(2*lambda)
14        oldv=newv;
15        newv(1)=-15+(lambda*0.5*(oldv(1)+oldv(2)));
16        newv(end)=-15+(lambda*0.5*(oldv(end)+oldv(end-1)));
17        for s=2:length(S)
18            psminus=zeros(1,length(S));
19            psminus(s-1)=0.75;
20            psminus(s+1)=0.25;
21            psplus=zeros(1,length(S));
22            psplus(s-1)=0.25;
23            psplus(s+1)=0.75;
24            [newv(s),d(s)]=max([-S(s)+lambda*psminus*oldv,S(s)+lambda*psplus*oldv]
25                +lambda*d-1);  %Fix decision vector to have correct values
26        end
27    end
28    d(d==1)=-1;  %Fix decision vector to have correct values
29    d(d==2)=1;
30 end
31 %Construct matrix of optimal policies
32 D(S,Lambda+1)=d(s);
33 changes=zeros(1,99);  %Look for changes in policies
34 for j=1:98
35     if max(D(:,j))=D(:,j+1))==1
36         changes(j)=j;  %Record where the change occurs
37     else changes(j)=0;
38 end
39 end
```