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So you know a few things about Markov Chains on finite state spaces. For example you know
that transition probabilities evolve by multiplication by the transition probability matrix, and
you know the meaning of powers of that matrix, you know about class structure, irreducibility,
transience, recurrence and periodicity. You also know about the stationary distribution. You
understand the basic stuff. You’ve reached some level of maturity in life. Good for you!
The other thing to really know about is about the behaviour of Markov Reward Processes
(MRP). These are processes of the form

(
Xt, r(Xt)

)
whereXt is a Markov chain and r(·) is some

function of the state space. Reward is the accumulated and possibly it’s time average is taken.
When dealing with policy evaluation for Markov Decision Processes (MDP), understanding
how to analyse MRP is critical. The theory for the case of finite state spaces is closed and well
understood. This is the subject of these notes.
The main use of these notes is to be an aid for following Chapter 8 of [Put94], “Average Reward
and Related Criteria”. That chapter relies on Appendix A of the book, which gives a concise
treatment of the subject. Specifically the Drazin Inverse and the Deviation Matrix. One
complication in the book and it’s appendix is that the treatment is general in the sense that it
supports Markov chains with several classes (not irreducible) and also periodic Markov chains.
This is all nice and good, but for a first reading one may want to assume irreducibly and
non-periodicity so as to understand the key concepts without complication. This is what we
do in these notes. I.e. the notes summarise the results of Appendix A of [Put94] together with
Section 8.2, “Markov Reward Processes and Evaluation Equations”, but assume throughout an
irreducible and aperiodic Markov chain.
The notes contain exercises. Some of these exercises take you through steps of proofs. As
you do that, make sure you also understand the assumptions in the exercises.
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Chapter 1

Basics

This material was covered in the lecture notes: “Basic Probability and Markov Chains” (and is
covered in many other places also). Here we simply put down the key concepts for the purpose
of notation (which differs slightly from the aforementioned notes).

1.1 Basic Definitions and Properties

Let {Xt, t = 0, 1, 2, . . .} be a sequence of random variables taking values in S = {1, . . . , N}.
We say this sequence is a Time Homogenous Finite State Space Discrete Time Markov Chain
if,

P(Xt = j |Xt−1 = s, Xt−2 = jt−2, . . . , X0 = j0) = P(X1 = j |X0 = s) := p(j |s).

The matrix, P with s, j’th entry being p(j | s) is called the transition probability matrix. We
have that Pm (m’th matrix power) is a matrix with entries, s, j being,

p(m)(j | s) := P(Xm = j |X0 = s).

We say that the Markov chain is irreducible if for each pair of states j and s there exists an
m > 0 such that p(m)(j | s) > 0. In a finite-state space irreducible Markov chain all states are
positive recurrent. This is typically defined to be the property that the expected return to each
state (from itself) is finite.
If the greatest common divisor of {m : p(m)(s | s) > 0} equals 1 for state s then the state is
said to have period 1. In an irreducible Markov chain, if this holds for one state, then it holds
for all states. In this case we say the Markov chain is aperiodic.
In the remainder of these notes we deal with finite state space Markov chains that are
irreducible and aperiodic. All statements are based on this assumption. The more general
case is covered in [Put94].
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1.2 The Limiting Matrix

Define the limiting matrix P ∗ to be with elements,

p∗(j | s) = lim
T→∞

1

T

T∑
t=1

p(t)(j | s) = lim
T→∞

p(T )(j | s). (1.1)

The first limit is called a Cesaro limit it equals the second limit only in a case where the second
limit exists (this is the case if the Markov chain is aperiodic). We assume this is the case. The
matrix with s, j’th entry being p∗(j | s) is denoted P ∗ and is called the limiting matrix.

Exercise 1. Show that P ∗ satisfies the following equalities:

PP ∗ = P ∗P = P ∗P ∗ = P ∗.

Exercise 2. Show that

1. (I − P ∗)2 = (I − P ∗).

2. P ∗(I − P ∗) = 0.

3. P ∗ is a stochastic matrix.

The following theorem describes the stationary distribution.

Theorem 1. The system of equations,

q′P = q′,

q′1 = 1,

has a unique positive solution.

Since P ∗P = P ∗, we can write,
P ∗ = 1q′.

That is P ∗ is an outer product of 1 and q. It is a rank one matrix, with all rows equal the
stationary distribution q′.

Exercise 3. Exercises (1) and (2) did not assume P ∗ = 1q′. Carry out the computations in
these exercises again under this structure of P ∗.
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Chapter 2

The Generalized Inverses

An inverse of a matrix, A is a matrix A−1 such that AA−1 = I. For non-square matrices and
for singular square matrices, such an inverse does not exist. But once can define the generalized
inverse (in several ways). This is a big subject in linear algebra. In this chapter, we discuss
certain generalized inverses associated with Markov chains.

2.1 The Underlying Linear Algebra

The following theorem summarizes a basic property of a stochastic, irreducible, aperiodic matrix
(Markov Chain), P . It encompass what is called as the “Perron-Frobenius” theorem. There are
also more general versions for irreducible and not necessarily aperiodic Markov chains. Denote
by σ(A) the spectral radius of the matrix A, this is the maximal modulus of all eigenvalues
of A.

Theorem 2. Under the finite state space, irreducible, aperiodic assumptions, the following
hold:

1. The value 1 is an eigenvalue of P with algebraic and geometric multiplicity one and and
a single linearly independent eigenvector.

2. There exists a non-singular matrix W for which,

P =W−1
[
Q 0
0 1

]
W, (2.1)

where Q is an (N − 1)× (N − 1) matrix with the following properties:

(a) It holds that σ(Q) < 1 (so 1 is not an eigenvalue of Q).
(b) The inverse (I −Q)−1 exists.
(c) σ(I −Q) = σ(I − P ).

3. The matrix P ∗ is unique and may be represented by,

P ∗ =W−1
[
0 0
0 1

]
W.
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One use Theorem 2 is to prove that the limit in (1.1) holds. We follow this proof now through
a series of three straight forward exercises:

Exercise 4. Show that,

Pn =W−1
[
Qn 0
0 1

]
W,

and hence,
1

T

T−1∑
t=0

P t =W−1
[

1
T

∑T−1
t=0 Q

t 0
0 1

]
W.

Next,

Exercise 5. Show that since I −Q is non-singular,

T−1∑
t=0

Qt = (I −QT )(I −Q)−1,

and hence since σ(Q) < 1, QT is bounded (in T ) so that,

lim
T→∞

1

T

T−1∑
t=0

Qt = 0.

Finally,

Exercise 6. Show now that,

lim
T→∞

1

T

T−1∑
t=0

P t =W−1
[
0 0
0 1

]
W = P ∗.

2.2 The Drazin Inverse

Take a matrix B that has the representation,

B =W−1
[
C 0
0 0

]
W,

where C and W are nonsingular. Then the Drazin inverse (or group inverse), denoted B# is
defined as,

B# =W−1
[
C−1 0
0 0

]
W.

Exercise 7. Show the following:

1. B#BB# = B#.

2. BB# = B#B.
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3. BB#B = B.

The Drazin inverse is a particular generalised inverse of B (we do not cover more definitions
related to generalised inverses here).
We now study the Drazin inverse (I − P )#.

Theorem 3. The following holds:

1. The matrix (I − P + P ∗) is non-singular with ZP denoting it’s inverse, i.e.,

ZP ≡ (I − P + P ∗)−1.

2. The Drazin inverse of (I − P ) denoted by HP satisfies,

HP ≡ (I − P )# = (I − P + P ∗)−1(I − P ∗) = ZP (I − P ∗).

3. It holds that,

HP =
∞∑
t=0

(P t − P ∗).

We now illustrate the proof of (1) and (2) through through exercises (we skip the proof of (3)):

Exercise 8. Prove (1) by showing the representation,

I − P + P ∗ =W−1
[
I −Q 0

0 1

]
W.

Exercise 9. Show that definition of the Drazin inverse implies,

(I − P )# =W−1
[
(I −Q)−1 0

0 0

]
W

=W−1
[
(I −Q)−1 0

0 1

]
W −W−1

[
0 0
0 1

]
W

and from this (2) follows.

The matrix HP is referred to as the deviation matrix. The matrix ZP is referred to as the fun-
damental matrix. They are both vaguely referred to as generalized inverses associated with P .

Exercise 10. Derive the following:

1. (I − P )HP = HP (I − P ) = I − P ∗.

2. HPP
∗ = P ∗HP = 0.

3. HP = ZP − P ∗.

4. ZPP ∗ = P ∗.

5. P ∗ = I − (I − P )(I − P )#.
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Chapter 3

The Laurent Series

For ρ > 1 define the resolvent of P − I denoted by Rρ by,

Rρ =
(
ρI + (I − P )

)−1
.

Letting λ = (1 + ρ)−1, we get,

(I − λP ) = (1 + ρ)−1
(
ρI + (I − P )

)
.

When λ ∈ [0, 1), σ(λP ) < 1 so (I − λP )−1 exists. Hence for ρ > 1, Rρ exists.

Exercise 11. Show the following:

1. (I − λP )−1 = (1 + ρ)Rρ.

2. Rρ = λ(I − λP )−1.

This is the Laurent series expansion for the resolvent:

Theorem 4. For ρ ∈
(
0, σ(I − P )

)
,

Rρ = ρ−1P ∗ +

∞∑
n=0

(−ρ)nHn+1
P .

Once again we supply the proof through a series of exercises.

Exercise 12. Let Q be defined through (2.1) and set B = I −Q. Then show how to use,

ρI + I − P =W−1
[
ρI +B 0

0 ρ

]
W,

to obtain,

Rρ = ρ−1W−1
[
0 0
0 1

]
W +W−1

[ (
ρI +B)−1 0

0 0

]
W. (3.1)

Exercise 13. Show that the first term of (3.1) equals ρ−1P ∗.
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Exercise 14. Show that the second term of (3.1) equals,

∞∑
n=0

(−ρ)nW−1
[
(I −Q)−(n+1) 0

0 0

]
W =

∞∑
n=0

(−ρ)nHn+1
P .

Do this by first showing that,

(ρI +B)−1 = (I + ρB−1)−1B−1
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Chapter 4

Evaluation of
Accumulated/Discounted/Average
Reward

We now show how to use some of the tools from above for evaluating the reward in a Markov
Chain. While we do not mention a Markov Decision Process (in these notes), think of this as
the reward obtained in an MDP with some given decision rule.

4.1 The Gain and Bias

Consider now some reward function: r : S → R. Since we take S = {1, . . . , N} it is convenient
to denote the vector of values r(1), . . . , r(N) by r. We are now interested in the gain (infinite
horizon average cost):

g(s) = lim
T→∞

1

T
Es
[ T∑
t=1

r(Xt)
]
= lim

T→∞

1

T

T∑
t=1

[P t−1r](s) = [P ∗r](s) = q′ r.

The fact g(s) does not depend on the initial state s is because of the irreducibility assumption
(holding throughout these notes). Denote the vector of constant values g, by g

The bias (vector) is defined to be,
h := HP r,

where HP is the fundamental matrix.

Exercise 15. Show that,

h =

∞∑
t=0

P t(r− g),

and explain why,

h(s) = Es
[ ∞∑
t=1

(
r(Xt)− g(Xt)

)]
.
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The total reward (vector) in N time units is,

vT+1 =
T∑
t=1

P t−1r,

i.e. vT+1(s) is the total reward when starting in state s.

Exercise 16. Show that,
vT+1 = Tg + h+ o(1),

where o(1) is a vector with components that approach 0 as T →∞.

4.2 Using the Laurent Series Expansion

We define,
vλ = (I − λP )−1r.

where λ ∈ [0, 1]. In fact, vλ is the expected discounted cost with discount factor λ (this was
shown in earlier when studying MDP).
Setting ρ = (1− λ)λ−1 or alternatively λ = (1 + ρ)−1, we have

vλ = (1 + ρ)
(
ρI + [P − I]

)−1
r.

Exercise 17. Show the following:
Let ν denote the nonzero eigenvalue of I − P with smallest modulus. Then for 0 < ρ < |ν| (ρ
“sufficiently small”),

vλ = (1 + ρ)
[
ρ−1y−1 +

∞∑
n=0

ρnyn

]
,

where,

y−1 = P ∗r,

y0 = g,

yn = (−1)nHn+1
P r, n = 1, 2, . . .

As a consequence the following holds:

Exercise 18. Establish,

vλ =
1

1− λ
g + h+ o(1− λ),

where o(1− λ) is a vector that converges to 0 as λ ↑ 1.

As a consequence, the following relation between the gain and the discounted reward holds:

Exercise 19. Establish,
g = lim

λ↑1
(1− λ)vλ.
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4.3 Evaluation Equations

Computing g and h through direct evaluation of P ∗ and HP can be done in very specific cases,
but is otherwise inefficient. An alternative is using a system of equations (sometimes refereed
to as Poisson’s equation – although not in [Put94]).

Theorem 5. The following holds,

g + (I − P )h = r. (4.1)

Further, if g and h are some vectors that satisfy (4.1) then P ∗h = 0 and h = HP r + γ1 for
some arbitrary scalar γ.

We establish (4.1) in this exercise.

Exercise 20. Use now P ∗ + (I − P )HP = I to establish (4.1).

A consequence is that (4.1) uniquely determines h up to an element of the null space of I −P .
This (in the irreducible case) is a space of dimension 1. Thus we we can find the relative values
h(j)− h(k) by setting any component of h to 0 and solving (4.1).
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