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So you didn’t study probability nor Markov chains? Or maybe you had a course, but forgot
some details. These notes (and the exercises within) summarise the basics. The focus in the
probability chapter is on discrete random variables. The focus in the Markov chains chapter
is on discrete time and finite state space. If you understand the content of these notes (and
are able to do the exercises), then you probably have the needed probability and Markov
Chains background for studying optimal control through the Markov decision processes (MDP)
viewpoint. The notes contain 75 exercises1.
These notes don’t contain many examples, so in case you feel that you can use some extra
reading then you can find dozens of books that cover the Markov Chains material and hundreds
of books for the probability material. Out of these, one suggestion (nicely matching the current
scope) is the material in Chapter 1 and Appendix A of “Essentials of Stochastic Processes,
Second Edition” by Rick Durrett (2012). This is available (for example) on-line through the
UQ Library. If instead you are using the first edition of that book (1999), then the relevant
chapters in that edition are Chapter 1 and Chapter 2. Both options are fine.
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Chapter 1

Probability

1.1 The Probability Triple

The basic thing to start with is P(A). What is this? Read this as the probability of the event
A. Probability is a number in the interval [0, 1] indicating the chance of the event A occurring.
If P(A) = 0 then A will not occur. If P(A) = 1, occurrence is certain. If P(A) = 0.78 then
we can read this as a chance of 78% for the event. It can also be read as that if we repeat
the experiment that we are talking about many times, the proportion of times of which we will
observe the event A occurring is 78%. The higher the probability the more likely the event will
occur.
But P(A) doesn’t live by itself. Sometimes people ask me: “You are a researcher in the field of
probability, so what is the probability of finding another life form on a different planet?”. My
response often follows the lines: “Sorry, guys, I need a probability model. For example, you can
ask me what is the chance of getting a double when tossing a pair of dice. Then my probability
model will tell you this is 1/6. But for finding life forms on a different planet, I don’t have a
model that I can use. Sorry... But we do have some friendly astrophysicists here at UQ so go
ask them!”.
So what is a probability model? Well the basic way to handle this is through a probability
triple,

(
Ω,F ,P

)
. The basic idea is that of an experiment. Think of every dynamic situation

as an experiment. By this I mean every situation in which there can be one of several possible
outcomes. The set of possible outcomes to this experiment is Ω. For example in the case of
tossing a pair of dice Ω can be represented by,

Ω = {(i, j) : i, j = 1, 2, . . . , 6}.

I.e. when you roll a pair of dice you can get (3, 4) indicating that the first die was 3 and
the second was 4 and you can get any other combination. The set Ω is called the sample
space. Caution: don’t confuse this with “sample” as used by statisticians; In general, you
shouldn’t confuse the (applied) mathematical field of probability with statistics! Do you know
the difference? If not, give it some thought.
Back to the probability triple: How about events? Well an event is a subset of Ω and we
denote the set of these by F . In complicated experiments not all subsets of Ω are in F , but in
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elementary examples such as the rolling of a pair of dice we can take F to be composed of all
possible subsets. Specifically this is the case when Ω is finite. In our specific case there are 236

possible outcomes! Also for our specific example, the event A ⊂ Ω which indicates “getting a
double” is:

A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.

One of the events in F is ∅. This is called the null-event. Another event is Ω itself. So basically,
events are sets (subsets of Ω and elements of F). The appendix to these notes can help you, if
you are not an ace on basic set notation and operations and similarly if you have some gaps of
knowledge with respect to basic counting (combinatorics).
Now P(·) is the probability measure (sometimes loosely called the probability function). It
is a function taking elements of F (events) and mapping them to [0, 1]. The basic (and most
sensible) model for rolling a pair of dice is to believe that each outcome (i, j) is equally likely. In
this case (this is often called a symmetric probability space) the probability measure is obvious:

P(A) =
|A|
|Ω|

.

So for the event we discussed before, P(A) = 6/36 = 1/6. But in other examples we may have
a different type of P(·) that does not give the same chance for all outcomes.
What properties do we expect Ω, F and P to obey? Well, F needs to be a sigma-Algebra (also
called sigma-field). This is a regularity property on the set (family) of events that ensures that
the mathematics end up being well defined. Basically we need:

1. ∅ ∈ F .

2. If A ∈ F then Ac ∈ F . The set Ac is the complement with respect to Ω. I.e. Ac = Ω \A.

3. If A1, A2, . . . ⊂ F then, ∪iAi ∈ F . The number of sets in the union can be finite or
countably infinite.

Some properties follow quite easily:

Exercise 1. Show that:

1. Ω ∈ F .

2. If A1, A2, . . . ⊂ F then, ∩iAi ∈ F .

A note about exercises: These notes are not complete without the exercises. I.e.
the exercises are often used to establish statements that are a key part of the
main body of understanding. Also, “show” means “prove”, just in case you were
wondering.
Having defined the (boring) machinery of F let’s move to the key ingredient of any probability
model: P(·). The probability measure must satisfy:

1. For any A ∈ F , P(A) ≥ 0.

2. P(Ω) = 1.
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3. For any countable sequence of disjoint events, A1, A2, . . .:

P(∪iAi) =
∑
i

P(Ai).

Key in (3) is the fact that the events are disjoint. I.e. for any Ai and Aj with i 6= j we have
Ai ∩Aj = ∅. The above probability axioms imply the following:

Exercise 2. Show that:

1. P(Ac) = 1− P(A).

2. P(∅) = 0.

3. P(A1∪A2) = P(A1)+P(A2)−P(A1∩A2) (this is called the inclusion-exclusion principle).

1.2 Independence

Two events A and B are said to independent if P(A ∩ B) = P(A)P(B). A typical example is
an experiment where you do two things and they don’t affect each other. For the rolling of
the dice experiment, this is typically the case: One die does not affect the other. And indeed
consider for i ∈ {1, . . . , 6}, the events:

Ai := {(i, 1), (i, 2), (i, 3), (i, 4), (i, 5), (i, 6)},
Bi := {(1, i), (2, i), (3, i), (4, i), (5, i), (6, i)}.

The event Ai implies “The first die yielded i”. The event Bi implies “The second die yielded i”.
What is the event Ai ∩Bj? It is read as “The first yield i and the second yielded j.” Indeed,

Ai ∩Bj = {(i, j)},

and thus,

P(Ai ∩Bj) =
|Ai ∩Bj |
|Ω|

=
1

36
=

1

6
· 1

6
=
|Ai|
|Ω|
|Bj |
|Ω|

= P(Ai)P(Bj).

So the events are independent.
This example is almost too trivial to be interesting. But the concept of independence goes a
long way in probability. This will become more evident when random variables and conditional
probability come into play.
Students starting with probability often get confused between “two events being disjoint” and
“two events being independent”. After all, both terms specify that the events are non-related
in some way. But in fact, these concepts are very different.

Exercise 3. Consider the experiment of tossing a fair coin (yielding ‘H’ or ’T’) and spinning
a wheel divided into three parts (yielding ’1’, ’2’ or ’3’). Assume the underlying probability
space is symmetric. Write Ω, F = 2Ω and specify P(A) for all A ∈ F (you’ll have 64 events!).
Fish out which events are disjoint and which events are independent. See that if two (non-
null) events are disjoint they are not independent. And conversely if two (non-null) events are
independent, they are not disjoint.
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Independence goes further than just two events. the events A1, . . . , An are said to be pair-wise
independent if for each i 6= j, Ai and Aj are independent. This set of events is said to be
independent (without the “pair-wise prefix”) if for any set of indexes, 1 ≤ i1 < i2 . . . < ik ≤ n:

P(Ai1 ∩ . . . ∩Aik) = P(Ai1) · . . . · P(Aik).

1.3 Conditional Probability

Given two events, A,B ⊂ Ω, with P(B) > 0, the conditional probability of A given B, denoted
P(A |B) is defined as:

P(A |B) :=
P(A ∩B)

P(B)
. (1.1)

Exercise 4. Assume P(A) > 0 and P(B) > 0. Show that A and B are independent if and only
if P(A |B) = P(A).

Mmmm... So if A and B are independent then the chance of A happening is not influenced by
B. But if there is some dependence, then P(A |B) 6= P(A).

Exercise 5. Suppose you roll a die. I tell you that the result is an even number. So now what
is the chance that the result is 6?

There are mathematical subtleties in defining conditional probability, but we won’t touch these.
From our perspective, we can consider the conditional probability P(· |B), (1.1), as a new
probability measure in a new probability triple,

(
B, F̃ , P(· |B)

)
. It is as though the sample

space was reduced from Ω to B and all probabilities were simply normalised. This means that
all the properties of P(·) from the previous section carry over. For e.g.,

P(A |B) = 1− P(B \A |B).

Below are three useful basic results that follow immediately from the definition in (1.1). Let
A,B1, B2, B3, . . . ⊂ Ω with {Bi} mutually disjoint sets such that ∪iBi = Ω:

1. The multiplication rule: Assume P(B) > 0, then P(A ∩B) = P(B)P(A |B).

2. The law of total probability: P(A) =
∑

i P(A |Bi)P(Bi) =
∑

i P(A ∩Bi).

3. Bayes’ rule: P(Bi |A) = P(A |Bi)P(Bi)∑
j P(A |Bj)P(Bj)

.

Note that in certain cases, the law of total probability and the celebrated Bayes’ rule hold also
when there is an non-countable family of events {Bt}. In that case, replace the summations
over i by integrals over t.

Exercise 6. Prove (1)–(3) above.

Have you heard of Bayesian statistics? The underlying mechanism is Bayes’ rule.
An example that surprises many people is the following: Suppose you are in a television
gameshow where you need to choose one of three boxes, one of which has a prize, and the
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others are empty. The game-show host knows where the prize is. You point at one of the boxes
and say with a hesitant voice: “this is my box”. At that point, the flashy gameshow host follows
the producer’s protocol and reveals another box, showing you that the prize is not in that one.
Now you know that either your first choice was the correct box, or perhaps the prize is in the
third box. The gameshow continues to follow protocol and says: “So, do you want to stay with
your box, or change (to the third box)?”. What do you do?
The immediate intuitive answer would be to say: “It doesn’t matter, there is a 50% chance for
having the prize in either the current box or the other option.” But let’s look more closely.
Denote the boxes by 1, 2, 3 and assume without loss of generality that you choose box 1 at first.
Denote the event that the prize is in box i by Ai. Clearly,

P(Ai) =
1

3
, i = 1, 2, 3.

Now the host will never reveal a box with a prize. If you initially guessed the correct box, the
host will have an option between two boxes to reveal. But if you initially guessed the wrong
box, the host only has one option of what to reveal. Denote by B the event that the host
reveals box 2 after your choice. I.e. Bc is the event that the host reveals box 3. So:

P(B |A1) =
1

2
, P(Bc |A1) =

1

2
.

and,
P(B |A2) = 0, P(Bc |A2) = 1,

and similarly,
P(B |A3) = 1, P(Bc |A3) = 0.

Now using the law of total probability,

P(B) = P(B |A1)P(A1) + P(B |A2)P(A2) + P(B |A3)P(A3) =
1

2
· 1

3
+ 0 · 1

3
+ 1 · 1

3
=

1

2
.

So (not surprisingly) there is a 50% chance that the host reveals box 2.
Now let’s put you back in that situation. You are on TV! You just made a choice (box 1), and
the gameshow guy (or flashy gal if you wish) just revealed box 2. So you observed the event B.
Now you want to compare,

P(A1 |B), v.s. P(A3 |B),

and choose the box which maximises this probability. Using Bayes’ Rule

P(A1 |B) =
P(B |A1)P(A1)

P(B)
=

1
2 ·

1
3

1
2

=
1

3
,

and the complement,

P(A3 |B) =
P(B |A3)P(A3)

P(B)
=

1 · 1
3

1
2

=
2

3
.

So you are better of changing boxes!!! Go for it.
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I must admit that this is one of the most confusing elementary examples of conditional prob-
ability (and Bayes’ rule) that are out there. But it is also one of the more shocking examples;
hence it is interesting. I was recently reminded of it by a curious pool-safety-person1, and I
couldn’t explain it to him without resorting to formalism. Maybe you can...

Exercise 7. NFQ Think about this example. Try to describe (in lay-person terms) why you
are better off changing boxes.

1.4 Random Variables and their Probability Distributions

So now you know what a probability triple is and you even know about independence and basic
conditional probability. What next? Well typically we work with random quantities. And by
“quantity” I mean something that is easier to handle and manipulate in comparison to arbitrary
sets (events). By this I mean real numbers, integers, complex numbers, vectors, matrices etc...
But let’s just think of random quantities that are either real valued (continuous) or integer
valued (discrete). Our focus is in fact on discrete (basically integer) quantities..
A random variable, X (also referred to sometimes as a measurable function), is a mapping from
Ω to R or N or some other sensible set (vectors, complex numbers etc...). Think for now about
integer random variables so, X : Ω → Z. Now the idea is that since the ω ∈ Ω is a random
outcome of an experiment, then so is X(ω). Formally, the way to handle this is to define for
sensible subsets of B ⊂ Z, an inverse image set,

A = {ω ∈ Ω : X(ω) ∈ B}.

Think of A as an event; B should not be thought of as an event. It is rather a set of values
that the random variable may take.
Now if everything is well defined meaning that F is rich-enough and that X(·) and B are not
too crazy, then A ∈ F and hence it is a proper event which we can stick in P(·). Often instead of
the event A we often just write “X ∈ B” instead. So we can calculate probabilities of the form,
P(X ∈ B). Of course if the set B contains just one point, say b, then we can try and evaluate
P(X = b) or if B is say an interval [a, b] (with possibility one or two of the endpoints being
−∞ or ∞, then we can try and evaluate P(a ≤ X ≤ b), etc.. etc... The point is that random
variables quantify the outcome of the experiment. And for some possible set of outcomes, B,
we are asking for the probability of X ∈ B.
Now consider sets B of the form, (−∞, b]. For such sets we have,

P(A) = P(X ∈ B) = P(X ≤ b).

Such subsets, B are useful because if we know the value of P(X ≤ b) for all b then we can use
this to calculate P(X ∈ B) for any sensible B. This motivates us to define the distribution
function:

FX(b) = P(X ≤ b).
1Dan Adelman (Finishing Touch Pool Safety Inspections and Compliance Repairs) – highly recommended

for pool safety certificates as well as for a long chat about probability once the job is done.
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The subscript X is just part of the notation of the function - it reminds us that this is the
distribution of the random variable X. This function is also (less ambiguously) called: the cu-
mulative distribution function (CDF). Some prefer to work with the complementary cumulative
distribution function (CCDF):

FX(b) := 1− FX(b) = P(X > b).

Some call the above the survival function - but these guys are typically wearing suits and
don’t smile too much because they work in insurance companies or are reliability engineers.
The CDF or CCDF are alternative descriptions of the distribution of X. There are other
descriptions which are sometimes useful also (probability mass function, probability density
function, moment generating function, probability generating function, characteristic function,
Laplace transform, hazard rate, renewal measure,...). What I’m trying to say is that there are
many ways to describe the distribution of a random variable, each useful in its own way. But
let’s get back to CDF:

Exercise 8. Show that,

1. limx→−∞ FX(x) = 0.

2. limx→∞ FX(x) = 1.

3. FX(·) is non-decreasing.

The above three properties are often taken to be defining properties of CDFs. For any function
satisfying the above, we can actually find a probability triple supporting a random variable X
with the desired CDF.
In these notes we focus mostly on random variables whose values fall within a discrete set such
as {0, . . . , n} for some finite n or N or Z etc. These are sometimes called discrete random
variables. We call the set of values which the random variable may take, the support. If (for
e.g.) the support does not have negative values then we say the random variable is non-negative.

Exercise 9. Consider the first example of these notes (tossing of two dice). Let the random
variable be the sum of the dice. Illustrate the graph FX(x). At points of discontinuity, make
sure to note open and closed indications on the graph.

For discrete random variables an alternative (and sometimes easier to handle) representation
of the distribution is the probability mass function (PMF):

pX(k) := P(X = k).

Assuming that the support is some subset of Z then,

FX(k) :=
k∑

i=−∞
pX(i) and pX(k) = FX(k)− FX(k − ε),

where ε is any value in the range (0, 1]. For k that are not in the support we simply have
pX(k) = 0. Keep this in mind, because when we write things such as,

∞∑
k=−∞

pX(k),

8



this is equivalent to, ∑
k ∈ support of X

pX(k).

Exercise 10. Draw the PMF associated for the previous exercise. Place your illustration under
the CDF. Exhibit the relationship between the CDF and the PMF.

Some people call refer to PMF as “density”. I respect these people, some of them are even my
friends, but I’m not one of them. I keep the word density for functions fX(x) that describe the
CDF of continuous random variables through:

FX(x) =

∫ x

−∞
fX(t) dt.

But more on this later (when we briefly touch continuous distributions). Also I should state
that in the continuation of these notes, I won’t use the notation pX(·) much, even though PMFs
will appear everywhere.

1.5 Expectation, Mean, Variance, Moments

The mean of a (discrete) random variable, denoted E[X] is:

E[X] =

∞∑
k=−∞

k pX(k).

An alternative name for the mean is the expectation or expected value. The expected value
describes the “center of mass” of the probability distribution. Another meaning follows from the
law of large numbers described in the sequel: If we observe many random variables having this
distribution and calculate their average, it will be near the mean. Note that in the summation
above, it is enough to sum over the support of the random variable since for other values of k,
pX(k) = 0.
Observe that the mean of an integer valued random variable does not have to be an integer.

Exercise 11. What is the mean value for the sum of two dice? Use the probability model and
random variable that appeared in previous exercises.

Exercise 12. Show that for a non-negative random variable,

E[X] =

∞∑
k=0

FX(k).

Take now h : IR→ IR then h(X(ω)) is some new random variable. We can calculate the mean
of this new random variable simply as follows:

E[h(X)] =
∞∑

k=−∞
h(k) pX(k). (1.2)
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I.e. the expectation functional, E[·] takes as input a random variable and returns a number.
When h(x) = xn then E[h(X)] is called the n’th moment. I.e. the first moment is the mean.
Another important case h(x) = (x − E[X])2 then E[h(X)] is called the variance and denoted,
Var (X). Note that it is non-negative. The square root of the variance is called the standard
deviation. Both the variance and the standard deviation are measures of the spread of the
distribution (each one of these is useful in its own way). You can see that:

Var (X) = E
[
(X − E[X])2

]
= E

[
X2 − 2E[X]X + (E[X])2

]
. (1.3)

Note that inside the expectation operator we are doing algebra involving both the random
variable X and the constant values, 2 and E[X].

Exercise 13. Show that,

1. If c is a constant (non-random quantity), then E[cX] = cE[X].

2. For any two random variables, X and Y ,

E[X + Y ] = E[X] + E[Y ].

(Illustrate this through the meaning of a random variable – a function of ω).

Now with these basic properties of the expectation, you are ready to proceed with (1.3) to show
that,

Var (X) = E[X2]−
(
E[X]

)2
.

This implies that for “zero-mean” random variables, the variance is simply the second moment.

Exercise 14. Let, c1, c2 be some constants. What is Var (c1X + c2) in terms of Var (X)?

Exercise 15. Show that if Var (X) = 0 then the support of X contains a single value (i.e.
there is some k0 such that pX(k0) = 1).

Another very important h(·) is obtained by setting some B ⊂ IR and then h(x) = 1B(x) :=
1{x ∈ B} (and indicator function returning 1 if x ∈ B and 0 otherwise). In this case E[h(X)] =
P(X ∈ B). Nice, no?

1.6 Bernoulli Trials

We now consider probability spaces where Ω is the set of binary sequences,

Ω = {(b1, b2, b3, . . .), bi ∈ {0, 1}}

and where P(·) is such that the events {bi = 1} are independent. We further assume that
P({bi = 1}) = p for all i. I.e. this probability space describes experiments involving a sequence
of independent “coin flips”, each with having the same probability of success: p.
There are now many random variables associated with this probability space. We say X follows
a Bernoulli distribution, with probability p if,

P(X = 0) = (1− p), and P(X = 1) = p.
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We say that X follows a binomial distribution with parameters n and p if,

P(X = k) =

(
n

k

)
pk (1− p)n−k, k = 0, . . . , n. (1.4)

Here n is any integer ≥ 1 and p ∈ [0, 1].

Exercise 16. Show that with respect to the Bernoulli Trials probability space,

X(ω) =

n∑
i=1

1{bωi = 1},

where bωi is the i’th element of ω. That is, derive the right hand side (1.4).

Exercise 17. Verify for the binomial distribution of (1.4), that
n∑
i=0

P(X = i) = 1.

Exercise 18. 1. Show that the mean of a binomial distribution is n p.

2. Let X be binomially distributed with n and p. What is the distribution of Z = n−X?

Exercise 19. Assume you are guessing answers on a multiple choose test that has 20 questions,
and each can be answered (a), (b), (c), or (d). What is the chance of getting 10 or more answers
correct?

Consider now, X(ω) = inf{k ∈ {1, 2, 3, . . .} | bωk = 1}. I.e. This is the index of the trial with
the first success. Such a random variable is said to follow a geometric distribution with success
probability p.

Exercise 20. Show that,

P(X = k) = (1− p)k−1 p, k = 1, 2, . . . .

Verify that (as needed),
∞∑
k=1

P(X = k) = 1.

Exercise 21. The chance of getting a flat-tire on a bicycle ride is 0.01. What is the chance of
having 20 consecutive bicycle rides without a flat tire?

A related random variable (also referred to as “geometric”), counts the “number of failures until
success” as opposed to the “number of trials until success”.

Exercise 22. What is the support and distribution of this version of the geometric?

A generalisation of the geometric distribution is the negative binomial distribution. Here X
counts the number of trials till m successes:

X(ω) = inf{k ∈ {1, 2, 3, . . .} |
k∑
i=1

bωi = m}.

The support of this distribution is {m,m+ 1,m+ 2, . . .}.

11



Exercise 23. Develop the pmf of the negative binomial distribution with parameters p ∈ [0, 1]
and m ≥ 1 from first principles. Do the same for a modification (as was for the geometric)
which counts the number of failures till m successes. The support here is {0, 1, 2, . . .}.

1.7 Other Common Discrete Distributions

You can think of the binomial distribution as follows: You are fishing in a lake where there are
M brown fish and N gold fish. You are fishing out n fish, one by one, and whenever you catch
a fish you return it to the lake. So assuming your chance of catching a fish of a given type is
exactly its proportion, and further assuming that fishing attempts don’t interact, the number
of gold fish that you get is binomially distributed with n and p = N/(N +M). The thing here
is that by catching a fish, you didn’t alter the possible future catches.
But what if you (weren’t a vegetarian like me), and as you catch a fish, you bop it in the head,
fry eat and eat it. Then with every fish you are catching, you are altering the population of
fish, and then the binomial description no longer holds. In this case X, the number of gold fish
that you catch follows a hyper-geometric distribution.

P(X = k) =

(
N
k

)(
M
n−k
)(

N+M
n

) .

Exercise 24. The hyper-geometric distribution is constructed by basic counting arguments on
a symmetric probability space. Carry out these arguments. Further, what is the support of this
distribution?

Exercise 25. NFQ When N +M →∞ (i.e. big lakes) such that N/(N +M)→ p, you would
expect that it doesn’t matter if you return the fish to the lake or not. This can be formalised by
showing the the pmf of the hyper-geometric distribution converges to the binomial distribution.
Find this some place in the literature and carry out the computations, describing the steps.
Or if you have already had several courses of probability, maybe try to do it without looking
elsewhere.

Another useful discrete distribution is the Poisson distribution (incidentally “poisson” means
fish in French – but we are now done with fish). The random variable X is distributed Poisson
with parameter λ if,

P(X = k) = e−λ
λk

k!
, k = 0, 1, 2, . . . .

Exercise 26. Show that the mean and variance are both λ.

The Poisson distribution is useful for describing the number of events in a time-interval. Espe-
cially when events occur in a “completely random manner”. That is, it may be a good model
for the number of shooting stars that you observe while looking at a moon-less desert sky for
an hour. To see this, consider the hour and divide it input n intervals, each interval being
quite small. Then it is sensible that within each such interval there is a probability of pn for
seeing a shooting star. Here the subscript indicates the dependence on n. The bigger the n the
smaller the p. In fact, how about setting λ = n pn (this is the mean number of shooting stars
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during that hour). Now if we increase n → ∞ then pn → 0 in such a way that their product
remains λ. For any finite n, the number of stars is distributed Binomial(n, pn). But as n→∞
this converges to Poisson.

Exercise 27. NFQ Show that for every k,

lim
n→∞

(
n

k

)(λ
n

)k (
1− λ

n

)n−k
= e−λ

λk

k!
.

As a final example of a discrete distribution, consider,

P(X = k) =
1

k(k + 1)
, k = 1, 2, . . . .

Indeed by writing
1

k(k + 1)
=

1

k
− 1

k + 1
,

we get a telescopic sum and see that,

∞∑
k=1

P(X = k) = 1,

as desired. This distribution is an example of a power-law, since the tails of it decay to 0 like
a power law. Such distributions are sometimes called heavy tailed and indeed the following
distribution does not have a finite mean.

Exercise 28. Show that the mean is infinite.

Note that while the mean is infinite it is well defined. I.e. this series diverges to infinity:

∞∑
k=1

k P(X = k) =∞.

But in other cases, the mean is not even defined. For e.g. consider this distribution:

P(X = k) =
1

2|k|(|k|+ 1)
, k = . . . ,−3,−2,−1, 1, 2, 3 . . . .

1.8 Vector Valued Random Variables

A vector valued random variable doesn’t differ much from the scalar (uni-variate) cases de-
scribed above. We’ll present things for a vector of two random variables, X and Y . The
generalisation to n random variables is straight forward.
The basic object is the joint probability mass function:

pX,Y (k, `) = P(X = k, Y = `).
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The requirement is that,
∞∑

k=−∞

∞∑
`=−∞

pX,Y (k, `) = 1.

This is sometimes called the joint distribution of X and Y . Knowing this joint distribution,
how can we recover the distributions of the individual random variables, X and Y ? To get the
distribution of X, we sum over all possible Y :

pX(k) =
∞∑

`=−∞
pX,Y (k, `).

Similarly to get the distribution of Y we can sum over all possible X.

Exercise 29. Derive the above using the law of total probability.

We know about independence of events, but what is independence of random variables? The
random variables X and Y are said to be independent if,

pX,Y (k, `) = pX(k) pY (`).

When the random variables are independent, the knowledge of X yields no information about
Y and visa-versa.
Given some function, h : IR× IR→ IR we can compute the expectation of the random variable
h(X,Y ) as follows:

E[h(X,Y )] =
∑
k

∑
`

h(k, `) pX,Y (k, `).

The covariance of X and Y , denoted Cov (X,Y ) is computed in this way using

h(x, y) = (x− E[X])(y − E[Y ]).

Exercise 30. Show that Cov (X,Y ) = E[XY ]− E[X]E[Y ].

Exercise 31. Show that if X and Y are independent then E[X Y ] = E[X]E[Y ] and hence,
Cov (X,Y ) = 0.

Exercise 32. Take a case where the support of X is {1, 2, 3} and the support of Y is {1, 2}.

1. Find pX,Y (x, y) such that Cov (X,Y ) 6= 0.

2. Find pX,Y (x, y) such that X and Y are not independent but Cov (X,Y ) = 0.

1.9 Conditioning and Random Variables

Now that you know about multiple random variables living together in the same probability
space, you can start seeing how they interact. Consider first the conditional probability:

P(X = k |Y = `).
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Since you can read “X = k” and “Y = `” as events then P(X = k |Y = `) is well defined (well,
as long as Y = ` can occur with a positive probability). Continuing this, define the function,
pX|Y=`(·, ·), as:

pX|Y=`(k, `) := P(X = k |Y = `) =
P(X = k, Y = `)

P(Y = `)
=
pX,Y (k, `)

pY (`)
.

The function pX|Y=`(·, `) specifies the conditional distribution of X given that Y = `.

Exercise 33. Show that pX|Y=`(·, `) is a valid probability mass function (in the first variable)
for any ` such that P(Y = `) > 0.

Exercise 34. Show that if X and Y are independent random variables, then
pX|Y=`(·, `) = pX(·).

Exercise 35. For your example used as solution of Exercise 32 calculate, pX|Y=`(·, ·) and
pY |X=k(·, ·) for all possible values. I.e. specify 6 distributions.

The geometric distribution is said to be memoryless due to this property:

P(X > s+ t|X > t) = P(X > s).

Exercise 36. 1. Show that the memoryless holds for geometric random variables.

2. Comment on why this property makes sense (considering the sequence of Bernoulli trials).

3. Find another discrete distribution which does not satisfy the memoryless property.

Now that you know about conditional distributions, you can talk about the conditional expec-
tation, variance, etc... Simply define:

E[h(X) |Y = `] =
∑
k

h(k) pX|Y=`(k, `).

Exercise 37. Calculate the conditional means of the 6 distributions of the previous example.
Compare these means to the two (unconditional) means of X and Y .

Observe that you can think of E[h(X) |Y = `] as a function of `. So what if you left ` unspecified
and let it simply be the result of the random variable Y ? In this case, you get (also called
conditional expectation) the random variable: E[h(X) |Y ]. The conditional expectation is a
random variable because it is a function of the random variable on which we are conditioning.

Exercise 38. Show that,
E
[
E[h(X) |Y ]

]
= E[h(X)]. (1.5)

Note that the outer expectation is with respect to the random variable Y .

The formula (1.5) is sometimes called the smoothing formula. It is sometimes super-useful
because, evaluation of E[h(X)] in its own may be tough, but if we condition on another random
variable Y , things get much easier. This is a classic example: Let X1, X2, . . . be a sequence of
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i.i.d. (independent and identically distributed) random variables independent of some discrete
random variable N . Denote,

S :=

N∑
i=1

Xi.

The new random variable S is sometimes called a random sum. For example, N may be
the number of insurance claims a company has during a month, and each insurance claim is
assumed to be distributed asX1. What is E[S]? Intuition may tell you that, E[S] = E[N ]E[X1].
This is for example the case if N equals some fixed value with probability 1 (the linearity of
expectation). But how can you show (prove) this? Well, condition on N :

E[
N∑
i=1

Xi] = E[E[
N∑
i=1

Xi |N ]]

= E[

N∑
i=1

E[Xi |N ]]

= E[
N∑
i=1

E[Xi]]

= E[N E[X1]]

= E[X1]E[N ].

Exercise 39. Detail (in words) what is happening in each step of the above derivation.

1.10 A Bit on Continuous Distributions

The random variables discussed up to now were discrete. Their support is finite or countably
infinite. For our purposes, these are indeed the critical cases to master. Nevertheless, we now
briefly touch on continuous random variables. In the continuous case, the support is some
non-countable subset of IR: E.g. [a, b] or [0,∞) or all of IR. For such random variables,
P(X = x) = 0 for any specific x, but for intervals of strictly positive length, the probability can
be non-zero. Such random variables are best described by a density function: fX(x) : IR→ IR+.
The best way to think of the density is that it is a function satisfies the following:

P(a ≤ X ≤ b) =

∫ b

a
fX(x) dx.

Exercise 40. 1. What is
∫∞
−∞ fX(x) dx ?

2. Given a density, fX(·), what is the CDF? Is the CDF a continuous function? Or only if
the density is continuous?

3. Given any integrable, non-negative function f̃(x), describe how to make a density fX(·)
such that fX(x) = Kf̃(x) for some constant K.
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For statisticians, the typical way of thinking about a distribution is through the density. If you
think about it, indeed a PMF and a density are not so different. You should also know that
random variables don’t need to be continuous or discrete, you can get mixtures of the two or
even more exotic objects. But for an elementary and introductory treatment such as ours, this
dichotomy is fine.
The mean, moments and variance of continuous random variables are defined in an analogous
way to the discrete case. The basic definitions is:

E[h(X)] =

∫ ∞
−∞

h(x) fX(x) dx. (1.6)

Once you realise that P
(
X ∈ [x, x+dx)

)
≈ fX(x) dx, the above should make perfect sense. I.e.

compare (1.6) with (1.2). As with discrete random variables, make sure that you know what
is the support of the random variable. For x’s not in the support, fX(x) = 0. So the region of
integration in (1.6) may be limited to the support.
There are many types (parametrised families) of continuous probability distributions and ma-
nipulation of these encompasses a good part of a full course of probability. Here we shall outline
three key types:
The uniform distribution on the range [a, b] has density,

fX(x) =
1

b− a
, x ∈ [a, b].

Exercise 41. Calculate the mean and variance of the uniform distribution. The mean should
make “perfect sense” – explain it. The variance: not intuitive.

Exercise 42. Write out the CDF of the uniform distribution. Make sure to specify it for the
three regions, x ≤ a, x ∈ [a, b] and x > b.

But come on! The uniform density is a bit boring. This one is much more exciting:

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , x ∈ IR.

This is the normal (also known as Gaussian) density with parameters µ ∈ IR and σ > 0.

Exercise 43. Show that the mean is µ and that the variance is σ2.

Gaussian random variables are everywhere. I said everywhere!!! In the sequel when we discuss
the central limit theorem there is some evidence for that.

Exercise 44. NFQ Do you believe me that for the Gaussian case, fX(·) is a density? Carry
out numerical integration (for some selected µ and σ) to check that,∫ ∞

−∞
fX(x) dx = 1.

The final example that we briefly describe is the exponential distribution with parameter λ > 0.

fX(x) = λ e−λx, x > 0.
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Exercise 45. 1. Verify that
∫∞

0 fX(x) dx = 1.

2. Calculate the mean.

3. Calculate the variance.

You can get a discrete distribution by transforming a continuous one. Here is one such example:

Exercise 46. Let X be distributed exponential(λ). Let Y = bXc. What is the distribution
of Y ?

Exercise 47. Show that (as for geometric random variables), exponential random variables
also satisfy the memoryless property.

1.11 Limiting Behaviour of Averages

Much of modern probability deals with limiting results associated with sequences of random
variables and stochastic processes. Here we only discuss the two fundamental classic results:
The first result states that the sample mean converges to the mean:

Theorem 1 (The Strong Law of Large Numbers (SLLN)). Let X1, X2, . . . be and i.i.d. sequence
of random variables with finite mean µ. Then with probability 1:

lim
n→∞

1

n

n∑
i=1

Xi = µ.

Exercise 48. Let q = P(Xi > α). Use the SLLN to show that with probability 1:

lim
n→∞

#n{Xi > α}
n

= q,

where #n{Ai} is the number of times out of the first n during which the event Ai occurs.

The next result is called the central limit theorem. It is the reason for the universality of the
normal distribution. It shows that normalised sums of random variables converge in distribution
to the normal distribution.

Theorem 2 (The Central Limit Theorem (CLT)). Let X1, X2, . . . be and i.i.d. sequence of
random variables with mean µ and finite variance σ2 > 0. Then,

lim
n→∞

P
(∑n

i=1Xi − nµ√
nσ2

≤ x
)

= Φ(x) :=

∫ x

−∞

1√
2π
e

−u2
2 du, ∀x ∈ IR.

Exercise 49. Another version (often more popular with statisticians) of the CLT deals with
the asymptotic distribution of the sample mean, 1

n

∑n
i=1Xi:

lim
n→∞

P
( 1
n

∑n
i=1Xi − an
bn

≤ x
)

= Φ(x) ∀x ∈ IR.

Here an is the mean of the sample mean and bn is it’s standard deviation. What are an and
bn?
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Exercise 50. NFQ Let X1, X2 and X3 be i.i.d. uniform(0, 1) random variables. Using either
a convolution (analytically – if you know how to do that) or via simulation (overviewed in the
next section), plot the density of Sn =

∑n
i=1Xi for n = 2 and 3. What is the relation of this

exercise to the CLT?

1.12 Computer Simulation of Random Variables

When you invoke the rand() function in matlab (or similar functions in similar software pack-
ages) you get a pseudo-random number in the range [0, 1]. This number is an element in a
deterministic (non-random) sequence initialised by a seed. A good pseudorandom sequence has
statistical properties similar to an i.i.d. sequence of uniform(0, 1) random variables.
What if you want to use a computer to generate (simulate) random variables from a different
distribution? In certain cases, it should be obvious how to do this:

Exercise 51. NFQ Generate on a computer, 10, 000 Bernoulli random variables with success
probability p = 0.25. Calculate the sample mean and sample variance. How far are these values
from the theoretical values?

So you figured out how to generate Bernoulli random variables. But what about other types
of random variables? Below is a general method.

Proposition 3 (Inverse probability transform). Let U ∼ uniform(0, 1) and Let F (·) be a CDF
with inverse function,

F−1(u) := inf{x |F (x) = u}.

Then the random variable X = F−1(U) is distributed with CDF F (·).

Proof.
P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).

So if you want to generate from distribution X, you need to find out F−1(·) and apply this
function to a pseudorandom uniform. For continuous random variables, this is often very easy.

Exercise 52. NFQ Generate 10, 000 exponential(1/2) values. Plot their histogram. Calculate
their sample mean and sample variance. Compare this to the theoretical values.

You will often need to generate from a discrete distribution with probability masses given by
some vector p. Proposition 3 can be used for that.

Exercise 53. NFQ Write a function that takes as input p of some arbitrary finite length and
generates a random variable distributed according to this vector. Try this on the vector,

p = [0.35, 0.25, 0.1, 0.3].

Generate 10, 000 values distributed according to p and compare their empirical frequencies to p.
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Chapter 2

Markov Chains

2.1 Markov Chain Basics

A stochastic process is a random function X(t, ω) where say t ∈ R (or ∈ Z) represents time
and ω ∈ Ω is a point in the probability sample space. An alternative view, is to think of
a stochastic process as a family (sequence) of random variables {X(t, ω), t ∈ R) (or ∈ Z).
Stochastic processes get interesting when the random variables are not independent. I.e. when
there is some dependence structure between them. In the sequel we omit the fact that X(·, ω)
depends on ω from the notation, but keep in mind it is always there.
When analysing a stochastic process, we sometimes use the term sample path or alternatively
realisation to refer to one instance of the time function X(·, ω) associated with a single ω.
An elementary, but highly useful stochastic process is the time homogenous finite state space
discrete time Markov chain (finite DTMC for short). This is a sequence of random variables
indexed by t ∈ Z+ with the following three properties:

1. Lack of memory (Markovian property):

P(X(t+ 1) = j | X(t) = it, . . . , X(0) = i0) = P(X(t+ 1) = j | X(t) = it).

2. Time Homogeneity (this makes the probability law of the the process time-homogenous):

P(X(t+ 1) = j | X(t) = i) = P(X(1) = j | X(0) = i) := pi,j .

3. Finite state space: There is some finite set (state space), S, such that,

P(X(t) 6∈ S) = 0, ∀t.

Since we are considering finite state space Markov chains, we may think of S = {1, . . . , N}
for some fixed integer N ≥ 2. At the end of section we briefly also discuss infinite (but still
countable) state-spaces. If you are reading these notes and have seen Markov chains before, it
may be a good idea that you occasionally ask yourself, where (and how) the finite state space
assumption is used. If on the other hand you have not encountered Markov chains previously,
then don’t let this distinction bother you.
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Based on properties (1) and (2) above, it can be seen that in order to specify the probability
law of the evolution of {X(t)} we need to specify, pi,j for i, j ∈ S as well as the distribution
of X(0) (the initial distribution). The convenient way to specify the transition probabilities is
by an N ×N matrix P = [pi,j ] with non-negative elements and with row sums = 1. I.e. each
row i can be treated as a PMF indicating the distribution of X(t+ 1) given that X(t) = i. A
convenient way to is specify the initial distribution is by a row vector, r(0) of length N having
non-negative elements and summing to 1 with i’th entry, ri(0) meaning: P(X(0) = i) = ri(0).
This is can again be viewed as a PMF.
Note that a non-negative matrix with row sums equal to 1 is called a stochastic matrix. Don’t
let the name confuse you; it isn’t a random variable or a random matrix, it is a deterministic
object.
Now using basic conditional probability and the law of total probability we can get some very
nice properties. First for t = 0, 1, 2, . . ., denote,

p
(t)
i,j = P(X(t) = j | X(0) = i),

and the matrix of these probabilities by P (t) = [p
(t)
i,j ]. Also denote,

ri(t) = P(X(t) = i),

with r(t) being the row vector of these probabilities.

Exercise 54. The basic dynamics of DTMCs is given by the following:

1. Show that P (0) is the identity matrix.

2. Show (arguing probabilistically) that P (t) is a stochastic matrix for any t ∈ Z+.

3. Show the Chapman-Kolmogorov equations hold:

p
(m+n)
i,j =

N∑
k=1

p
(m)
i,k p

(n)
k,j .

4. Show that P (t) = P t. I.e. P t = P · P · . . . · P , where the product is of t matrices.

5. Show that r(t) = r(0)P t (the right hand side here is a row vector multiplied by a matrix).

The next exercise, will ensure you got the point. I hope you are in the mood for doing it.

Exercise 55. Make a model of your feelings. Say 1 ≡ “happy”, 2 ≡ “indifferent”, 3 ≡ “sad”.
Assume that you are Markovian (i.e. the way you feel at day t+ 1 is not affected by days prior
to day t, if the feelings at day t are known)1.

1. Specify the transition probabilities matrix P which you think matches you best.

2. Assume that at day 0 you are sad with probability 1. What is the probability of being
happy in day 3.

1This is perhaps a sensible assumption for guys; gals on the other hand may require more complicated models.
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3. Assume that at day 0 you have a (discrete) uniform distribution of feelings, what is the
probability of being happy in day 3.

4. Assuming again, that the initial distribution is uniform, what is the probability of “happy,
happy, sad, sad, happy" (a sequence of 5 values on times t = 0, 1, . . . , 4).

Markov chains generalised i.i.d. sequences:

Exercise 56. Assume you are given a PMF pX(·) with support {1, . . . , N}. How can you make
a Markov chain such that {X(t)} is an i.i.d. sequence of that PMF? I.e. what matrix P will
you use? Explain.

The fact that r(t) = r(0)P t is remarkable and beautiful. But in general it is quite hard to
have an explicit analytic expression for P t. With some effort, you can do this for a two-state
Markov chain:

Exercise 57. Consider the Markov chain over S = {1, 2}.

1. How many free parameters are in this model (i.e. how many numbers specify r(0) and P )?

2. Write an expression for P t in terms of the parameters (e.g. do this by diagonalising the
matrix P so that you can evaluate matrix powers easily).

3. Write an expression for r(t).

4. What happens to r(t) as t→∞?

5. Do you have any intuition on the previous result?

2.2 First-Step Analysis

Consider a gambler; one of those hard-core TAB types. She has X(t) dollars at day t. Her
goal is to reach L dollars, since this is the amount needed for the new tattoo she wants2. She
attends the bookies daily and is determined to gamble her one dollar a day, until she reaches
either L or goes broke, reaching 0. On each gamble (in each day) she has a chance of p of
earning a dollar and a chance of 1− p of loosing a dollar.
This problem is sometimes called the gambler’s ruin problem. We can view her fortune as the
state of a Markov chain on state space, S = {0, 1, 2 . . . , L− 1, L}.

Exercise 58. Specify the transition probabilities pi,j associated with this model.

At day t = 0, our brave gambler begins with X(0) = x0 dollars. As she drives to the bookies,
Jimmy texts her: “Hey babe, I was wondering what is the the chance you will eventually reach
the desired L dollars?”. She thinks while driving, but can’t concentrate, so she stops the car
by the side of the road and sketches out the following in writing: Define,

τ0 := inf{t ≥ 0 : X(t) = 0}, τL := inf{t ≥ 0 : X(t) = L}.
2The tattoo will feature the name of her boyfriend, “Jimmy” together with a picture of a Holden.
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These two objects are random variables which are called hitting times (the time it takes till
hitting a state for the first time). They are random because different realisations of X(·, ω)
imply different values for τ0 or τL. Note that the infimum of the empty set is defined to be ∞.
So if our gambler, for example reaches L, then τ0 =∞ and similarly if the other case occurs.
In terms of hitting times, Jimmy’s question to our gambler, was to evaluate:

qi := P
(
τL < τ0 | X(0) = i

)
, with i = x0.

We define qi for all states i, because to evaluate qx0 we will need the other qi also. It is obvious
that q0 = 0 and qL = 1 but what if i ∈ {1, . . . , L − 1}? Well here we can partition the event
{τL > τ0} based on the first step:

qi = P
(
τL < τ0 | X(0) = i

)
= P

(
τL < τ0 | X(0) = i, X(1) = i+ 1

)
pi,i+1 + P

(
τL < τ0, | X(0) = i, X(1) = i− 1

)
pi,i−1

= P
(
τL < τ0 | X(1) = i+ 1

)
pi,i+1 + P

(
τL < τ0, | X(1) = i− 1

)
pi,i−1

= P
(
τL < τ0 | X(0) = i+ 1

)
pi,i+1 + P

(
τL < τ0, | X(0) = i− 1

)
pi,i−1

= qi+1 p+ qi−1(1− p).

So using this first step analysis we end up with L + 1 equations for the L + 1 unknowns
q0, q1, . . . , qL:



1 0 0
(1− p) −1 p

0 (1− p) −1 p
. . . . . . . . . . . .

(1− p) −1 p 0
(1− p) −1 p

0 0 1





q0

q1

q2
...
...

qL−2

qL−1

qL


=



0
0
0
...
...
0
0
1


The unique solution to these equations happens to be,

qi =


i/L if p = 1/2,

1−
(

1−p
p

)i
1−
(

1−p
p

)L if p 6= 1/2.
(2.1)

Exercise 59. Verify that the solution given above is correct.

1. (Analytically) – Plug it in the equations and see it satisfies them.

2. (Numerically) – Make a 10 × 10 matrix in matlab (or anything else) and see that the
vector qi solves the equations above.

3. (Simulation) – Simulate this gamblers ruin problem for some given parameters (say with
L = 9) to verify that qi is indeed correct. Basically do this by generating sample paths
X(·, ω) for all times t, till min{τ0, τL}.
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Exercise 60. NFQ Assume you didn’t know the formula in (2.1). Think of methods in which
you can obtain it. Outline your methods. Try to start with p = 1/2 and then move onto p 6= 1/2.

The concept of first step analysis goes hand in hand with Markov chains and is useful for a
variety of settings. When our gambler finished the calculations above, she texted Jimmy the
result (qx0) and drove off. But then she got another text: “Honey love, for how many more
days will you do this? Can’t wait babe!”. She thinks, and then figures out that Jimmy wants
to know,

mi := E[min{τ0, τL} | X(0) = i] with i = x0.

By now our gambler knows how to do first step analysis, even while driving. She formulates
the following: First,

m0 = 0 and mL = 0.

Even Jimmy can do this part. But further for i ∈ {1, 2, . . . , L− 1}:

mi = pi,i+1(1 +mi+1) + pi,i−1(1 +mi−1)

= 1 + pi,i+1mi+1 + pi,i−1mi−1

= 1 + pmi+1 + (1− p)mi−1

So again we have L+ 1 equations with L+ 1 unknowns.

Exercise 61. Find the solution when p = 1/2.

Exercise 62. NFQ Find the solution when p 6= 1/2.

2.3 Class Structure, Periodicity, Transience and Recurrence

Note: Some of the derivations in this section are heuristic, hence we avoid using the theo-
rem/proof phrasing to things. Nevertheless, the reader should know that without much extra
effort, all of the results can be proved in a precise manner.
One way to visualise the transition matrix of a finite DTMC is by drawing the weighted graph
associated with P . Edges associated with (i, j) such that pi,j = 0 are omitted . If you ignore
the weights you simply get a directed graph. What does this graph tell you? Well, by studying
it, you can see which paths the process may possibly take, and which paths are never possible.
Of course, if pi,j > 0 for all state pairs, then there is nothing to do because you have a complete
graph. But in applications and theory, we often have pi,j = 0 for a significant portion of the
tuples (i, j). This allows us to study the directed graph that has edge (i, j) only when pi,j > 0.
This graph obviously doesn’t specify all of the information about the DTMC, but it does tell
us the class structure. We describe this now.
We say that two states, i and j communicate if there are two non-negative integers t1 and t2
such that p(t1)

i,j > 0 and p(t2)
j,i > 0. This implies there is a path (in the directed graph) from i

to j and a path from j to i. We denote communication of i and j by i ↔ j. The relation of
communication is an equivalence relation3 over the set of states. Namely: i ↔ i (reflexivity);
if i↔ j then j ↔ i (symmetry); and finally if i↔ j and j ↔ k then i↔ k (transitivity).

3If for some reason you don’t know what an equivalence relation is, don’t stress. You’ll understand from the
text.
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Exercise 63. Use the Chapman-Kolmogorov equations to prove transitivity.

The implication of the fact that ↔ is an equivalence relation is that it induces equivalence
classes, C1, C2, . . . that are a partition of S. That is, Ci and Cj are disjoint for i 6= j and
∪iCi = S. All states within class Ci communicate with each other, but do not communicate
with states that are not in Ci. Obviously for finite state spaces of size N , there can be at most
N classes and this upper bound is achieved only when P = I, the identity matrix. At the other
extreme, we are often interested in Markov chains with only one class. Such Markov chains are
said to be irreducible.
A state i is said to have a period of d if p(t)

i,i = 0 for all integers t that are not divisible by d,

and further d is the greatest integer with this property. E.g, assume, that p(3)
i,i > 0, p(6)

i,i > 0,

p
(9)
i,i > 0 etc... and further p(t)

i,i = 0 for t /∈ {3, 6, 9, . . .}. So if we start at time 0 in state i
we can only expect to be in state i at the times 3, 6, 9, . . .. It isn’t guaranteed that at those
times we visit state i, but we know that if we do visit state i, it is only at those times. It
can be shown that all states in the same class have the same period. But we won’t ponder on
that. In general, we aren’t so interested in periodic behaviour, but we need to be aware of it.
In particular note that if pi,i > 0 for all states i, then the Markov chain is guaranteed to be
non-periodic.
Define now, the hitting time4 (starting at 1): τi = inf{t ≥ 1 | X(t) = i} and define,

f
(t)
i,j =

{
P(τj = t | X(0) = i) if t ≥ 1,

0 if t = 0.

Further define fi,j =
∑∞

t=1 f
(t)
i,j . This is the probability of ever making a transition into state

j, when starting at state i:

fi,j = P
( ∞∑
t=1

1{X(t) = i} ≥ 1 | X(0) = i
)
.

A state i is said to be recurrent if fi,i = 1. This means that if X(0) = i we will continue visiting
the state again and again. A state that is not recurrent is transient; i.e. i.e., fi,i < 1 then there
is a non-zero chance (1− fi,i) that we never return to the state.

Exercise 64. Assume that X(0) = i and state i is transient. Explain why the distribution of
the number of visits to state i after time 0, is geometric with success probability 1 − fi,i and
mean 1/(1− fi,i). I.e.,

P
( ∞∑
t=1

1{X(t) = i} = n | X(0) = i
)

= (1− fi,i)(fi,i)n, n = 0, 1, 2, . . .

Further, write an expression (in terms of fi,j values) for,

P
( ∞∑
t=1

1{X(t) = j} = n | X(0) = i
)
.

4Some authors refer to the case starting at time 1 as as a first passage time and to the case starting at time
0 as a hitting time. This distinction only matters if the initial state is i itself.
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In certain cases, it is obvious to see the values of fi,j :

Exercise 65. Consider the Markov chain with transition matrix,

P =

 0.3 0.7 0
0 0.5 0.5
0 0.5 0.5

 .
1. What are the classes of the Markov chain.

2. Which states are transient, and which are recurrent.

3. What are fi,j for all i, j?

Consider now the following example,

P =


0.1 0.7 0.2 0
0.4 0.3 0 0.3
0 0 1 0
0 0 0 1

 . (2.2)

The classes of this example are C1 = {1, 2}, C2 = {3} and C3 = {4}. Here without doing any
calculations it is already obvious that f3,3 = 1 and f4,4 = 1, since states 3 and 4 are recurrent.
They are even called absorbing, because once you get to state 3 or state 4, you never leave. So
f3,i = 0 for i 6= 3 and further f4,i = 0 for i 6= 4. But the values fi,j with i ∈ {1, 2} are not as
clear. Starting in state 1, for example, there is a 0.2 chance of absorbing in 3 and and with the
complement there is a chance of staying within the class C1. So how does this affect f1,i?
The general mechanism we can use is first step analysis. This is the basic equation:

fi,j = P
( ∞∑
t=1

1{X(t) = j} ≥ 1 | X(0) = i
)

=
∑
k 6=j

P
( ∞∑
t=1

1{X(t) = j} ≥ 1 | X(0) = i, X(1) = k
)
pi,k

+ P
( ∞∑
t=1

1{X(t) = j} ≥ 1 | X(0) = i, X(1) = j
)
pi,j

=
∑
k 6=j

fk,j pi,k + pi,j

=
∑
k 6=j

pi,kfk,j + pi,j .

Exercise 66. This exercise relates to the matrix P in (2.2).

1. Find f1,3 and f1,4 (you’ll need to find out other fi,j values for this).

2. Explain why f1,3 + f1,4 = 1.

3. Run a simulation to verify your calculated value of f1,3.

26



There are many characterisations of recurrent and transient states. One neat characterisation
is the following:

State i is recurrent if and only if
∞∑
t=0

p
(t)
i,i =∞. (2.3)

The idea of the derivation looks at the expected number of visits to the state:

E
[ ∞∑
t=0

1{X(t) = i} | X(0) = i
]

=
∞∑
t=0

E
[
1{X(t) = i} | X(0) = i

]
=
∞∑
t=0

p
(t)
i,i

Now for a recurrent state, we know that
∑∞

t=0 1{X(t) = i} = ∞ and thus the expectation of
this random variable should also be∞. So this shows the direction⇐=. For the other direction
assume that state i is transient (the contrapositive). In this case we saw that

∑∞
t=0 1{X(t) = i}

is a geometric random variable with finite expectation, so
∑∞

t=0 p
(t)
i,i <∞.

In many cases, we can’t explicitly compute p(t)
i,i so there isn’t much computational use for (2.3).

But one classic fascinating example is the simple random walk. For this we assume now a state
is S = Z. Take p ∈ [0, 1] and set,

pi,j =


p if j = i+ 1,

(1− p) if j = i− 1,

0 otherwise.

This is the only example in these short notes where we are considering a (countably) infinite
state space. A full introductory course on stochastic processes, featuring DTMC would typically
put much emphasis on many other countably infinite state space models.
The example is called a random walk because at every time step the walker takes either a step
up with probability p or a step down with probability 1 − p. It is called simple, because the
change at each time point is a random variable with support {−1, 1}. In the general random
walk, steps would be of arbitrary magnitude.
A nice feature of this model is that we can actually calculate p(t)

i,i .

Exercise 67. Verify the following:

1. If p = 0 or p = 1 there is an infinite number of classes, but if p ∈ (0, 1) the model is
irreducible.
For the rest of the items below, assume p ∈ (0, 1).

2. The model is periodic with period 2.
So now we will consider p(2t)

i,i , since for t ∈ {1, 3, 5, 7, . . .}, p(t)
i,i = 0.

3. Explain why:

p
(2t)
i,i =

(
2t

t

)
pt(1− p)t.
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4. NFQ Now use the Stirling approximation for t! (see Appendix) to show,

p
(2t)
i,i ∼

(
4p(1− p)

)t
√
πt

,

where the symbol ∼ implies that as t → ∞ the ratio of the left hand side and the right
hand side goes to 1.

5. NFQ Verify (using the definition of convergence of a series), that if at ∼ bt then∑
t at <∞ if and only if

∑
t bt <∞.

6. NFQ Verify that
∞∑
t=0

(
4p(1− p)

)t
√
πt

=∞,

if and only if p = 1/2 (otherwise the series converges).

With the results of the above exercise we know that state i (for any i) is recurrent if and only
if p = 1/2. That is if p 6= 1/2 then all states are transient. Loosely speaking, the chain will
“drift off” towards +∞ if p > 1/2 and towards −∞ if p < 1/2. States may be revisited, but
ultimately, each state i will be revisited only a finite number of times.
In finite Markov chains, we can’t have all states transient:

Exercise 68. Argue why a finite DTMC, must have at least one recurrent state.

In the infinite state space case, we can sometimes have that,

E[τi | X(0) = i] =∞,

even when state i is recurrent. Such is actually the case for the simple random walk in the
symmetric case (p = 1/2). This cannot happen when the state space is finite. This phenomenon
is called null-recurrence. The other case,

E[τi | X(0) = i] <∞,

is referred to as positive-recurrence. In finite state space DTMC all recurrent states are positive-
recurrent. Further, in the finite state space case, if the DTMC is irreducible then all states are
recurrent and thus all states are positive-recurrent.

2.4 Limiting Probabilities

We are often interested in the behaviour of {X(t)} over long time periods. In applied mathe-
matics, infinity, is a good approximation for “long”. There is much to say here and we will only
cover a small portion of the results and cases heuristically. Specifically, let us now assume that
our DTMC has finite state-space, that it is irreducible, and that it is aperiodic (all states have
a period of 1). Limiting probability results often hold when these assumptions are partially
relaxed, but one needs to take more care in specifying the results.
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To illustrate the main idea we return to exercise (55). If your example chain for that exercise
had pi,i ∈ (0, 1) then the above conditions are satisfied. Let us assume that this is the case.
Now ask5,

“Over the long range, in what proportion of my days am I happy?”

Remembering that our code for “happy” was 1, the question can be posed as finding

π1 := lim
t→∞

E
[∑t

`=0 1{X(`) = 1}
t

]
.

The value π1 is then referred to as the limiting probability of being in state 1. I should hope
that for your Markov chain of exercise (55), π1 is high (close to 1). How can we evaluate it?
The key result is that we can solve the system of equations:

π1 = π1 p1,1 + π2 p2,1 + π3 p3,1,

π2 = π1 p1,2 + π2 p2,2 + π3 p3,2,

π3 = π1 p1,3 + π2 p2,3 + π3 p3,3,

1 = π1 + π2 + π3.

Now the unique solution, [π1, π2, π3] gives the long range proportion during which state i is
occupied. Note that we have 4 equations with only 3 unknowns, but we should in fact omit
one (any one) of the first 3 equations (this is a consequence of the fact P is a singular matrix).
These equations are called the balance equations. In matrix form they are compactly written
with π taken as a row vector and 1 a column vector of 1’s.

π = πP,
1 = π1.

(2.4)

Exercise 69. Consider your matrix P of exercise (55). Use a computer for the following:

1. Solve the balance equations for π.

2. Run a single simulation of the DTMC for T = 10, 000 time points. Choose any initial
distribution for X(0). Evaluate for i ∈ {1, 2, 3},

π̂i :=

∑T
`=0 1{X(`) = i}

T
,

compare these values to the answer of item 1.

3. Compute P 5, P 10,P 20 and P 100. Compare the rows of these matrices with the answer of
item 1.

4. The numerical illustration of the previous item, indicates that the rows all converge to π.
If this is indeed true (which it is), argue that for any initial distribution, r(0),

lim
t→∞

r(t) = π.

5Beware of such questions if your current age is 10 ∗ n± ε where ε is small. Such thoughts can throw you on
soul adventures that you may end up regretting – or maybe not.
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The numerics of the above exercise, indicate the validity of the following (we omit the proof –
note also that there are much more general formulations):

Theorem 4. Consider a finite DTMC that is irreducible and non-periodic. Then,

1. The balance equations (2.4) have a unique solution with πi ∈ (0, 1).

2. It holds that for any i ∈ S,
lim
t→∞

p
(t)
i,j = πj .

3. It holds that,

πi =
1

E[τi | X(0) = i]
.

4. For any function, f : S → IR, we have with probability one,

lim
t→∞

∑t
`=0 f

(
X(`)

)
t

=
∑
i∈S

πi f(i).

So basically, knowing π gives us much information about the long run or steady state behaviour
of the system. When talking about long range behaviour it is π that matters; the initial
distribution, r(0) becomes insignificant. Item 4 (also called the ergodic property) shows that
long range behaviour can be summarised in terms of π.

One of the names of the distribution π is the stationary distribution also known as the invariant
distribution. A process {X(t)} is stationary if for any integer k ≥ 0 and any integer values,
t1, . . . , tk, and any integer τ ,

P(X(t1) = i1, . . . , X(tk) = ik) = P(X(t1 + τ) = i1, . . . , X(tk + τ) = ik).

Exercise 70. Use the equations describing π to show:

1. If we start at time 0 with r(0) = π, then r(1) = π and this holds for all r(t).

2. More generally, show that if we start at time 0 with r(0) = π then the process is stationary.

So when we look at a DTMC, we can consider the stationary version where we choose r(0) = π.
This means we are looking at the system which is already in “statistical equilibrium”. Such
systems may not exactly occur in practice, but it is often a very sensible approximation for
systems that have been running for a bit of time.
If on the other hand r(0) 6= π, then the DTMC is not stationary. But still, if we let it run for
some time, it can be approximately considered to be stationary. This is due to item 2 of the
theorem above.
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Appendix A

Basics of Sets and Counting

A.1 Sets

A set is a collection of objects, e.g. A = {1,−3, 8, a}. Sets are not regarded as ordered and can
have a finite or infinite number of objects. x ∈ A is read as "x is an element of A". Similarly
x /∈ A. E.g. for the set above we have 1 ∈ A and 4 6∈ A.
We say A is a subset of B (denoted by A ⊂ B) if whenever x ∈ A we also have x ∈ B. We say
two sets A and B are equal (denoted A = B) if A ⊂ B and B ⊂ A. The empty set, denoted ∅
has no elements (∅ = {}). It is a subset of any other set.
We often have a universal set (in probability theory it is often denoted Ω). Having such a set
allows us to define the complement of any subset of Ω: Ac. This is the set of all elements that
are not in A but in Ω. This can also be written as,

Ac = {x ∈ Ω : x 6∈ A}.

Note that (Ac)c = A. Also, Ωc = ∅.
The union of two sets A and B, denoted A ∪ B, is the set that contains all elements that are
in either A, B or both. E.g. {−2, 0, 3} ∪ {0, 1} = {0,−2, 3, 1}. Note that A ∪ Ac = Ω. The
intersection of two sets A and B, denoted A ∩ B, is the set of all elements that are in both A
and B. E.g. {−2, 0, 3} ∩ {0, 1} = {0}. Note that A ∩Ac = ∅.

Exercise 71. NFQ Prove the following:

1. A ∩ B ⊂ A ∪ B.

2. Commutative properties: A ∪ B = B ∪ A and A ∩ B = B ∩ A.

3. Associative properties: A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C.

4. Distributive properties: A∪(B∩C) = (A∪B)∩(A∪C) and A∩(B∪C) = (A∩B)∪(A∩C).

5. DeMorgan’s rules: (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc.

Two sets A and B are said to be disjoint if A ∩ B = ∅. The difference of A and B, denoted
A\B is the set of elements that are in A and not in B. Note that A\B = A ∩ Bc.
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We can use the following notation for unions:
⋃
γ∈ΓAγ , or similarly for intersections

⋂
γ∈ΓAγ .

This means taking the union (or intersection) of Aγ for all γ in Γ. E.g. if Γ = {1, 2} it implies
A1 ∪ A2 (or similarly for intersection).

Exercise 72. NFQ Prove DeMorgan’s rules for arbitrary collections:( ⋃
γ∈Γ

Aγ
)c

=
⋂
γ∈Γ

Acγ , and
( ⋂
γ∈Γ

Aγ
)c

=
⋃
γ∈Γ

Acγ .

The power set of a set A, denoted 2A is the set of all subsets of A, e.g.,

2{a,b} = {∅, {a}, {b}, {a, b}}.

A.2 Counting

For a finite set A, |A| denotes the number of elements in A. E.g. |{a, b, c}| = 3. A k-tuple is
simply an ordered list with values (x1, . . . , xk). The multiplication principle: The number of
distinct ordered k-tuples (x1, . . . , xk) with components xi ∈ Ai is |A1| · |A2| · . . . · |Ak|.

Exercise 73. NFQ Show that for A finite,

|2A| = 2|A|.

The number of ways to choose k objects from a finite set A with |A| = n, not requiring the
objects to be distinct is: nk. This is sometimes called sampling with replacement and with
ordering. Note that this also corresponds to the number of ways of distributing k distinct balls
in n bins where there is no limit on the number of balls that can fit in a bin.
The number of ways to choose k distinct objects from a finite set A of size n where order
matters is

n · (n− 1) · . . . · (n− k + 1).

I.e. this is the number of k-tuples with distinct elements selected from A. This is number also
corresponds the number of ways of distributing k distinct balls in n bins where there is a limit
of at most one ball per bin. Note that if k = n this number is n! (e.g. 5! = 5 · 4 · 3 · 2 · 1 = 120).
Each ordering of a finite set of size n is called a permutation. Thus the number of permutations
is n!. Note Stirling’s formula:

n! ∼
√

2πnn+ 1
2 e−n.

The "similar sign" ∼ indicates that the ratio of the left hand side and right hand side converges
to 1 as n → ∞. Note: We often use ∼ to indicate the distribution of a random variable -
something completely different.
The number of ways of choosing k distinct objects from a finite set A where order does not
matter is similar to the case where order matters but should be corrected by a factor of k!.
This number is sometimes called the binomial coefficient:( n

k

)
:=

n · (n− 1) · . . . · (n− k + 1)

k!
=

n!

k!(n− k)!
.
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I.e. this is the number of subsets of size k of a set of size n. It also corresponds to the number
of ways of distributing k indistinguishable balls in a n bins with room for at most one ball per
bin.

Exercise 74. NFQ Prove each of these properties both algebraiclly and using counting argu-
ments:

1. ( n
k

)
=
( n
n− k

)
.

2. ( n
0

)
=
( n
n

)
= 1.

3. ( n
1

)
=
( n
n− 1

)
= n.

4. ( n
k − 1

)
+
( n
k

)
=
( n+ 1

k

)
.

5. The binomial theorem:

(a+ b)n =
n∑
k=0

( n
k

)
akbn−k.

6.
n∑
k=0

( n
k

)
= 2n.

A.3 Countable an Not Countable Sets

The set of natural numbers, denoted N is {1, 2, 3, . . .}. A set, S is said to be countable if it is
either finite, or it is infinite and there exists a one-to-one mapping between S and N, in the
latter case, it is sometimes refered to as countably infinite.
The set of integers, denoted Z is {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. The non-negative integers are
denoted Z+ := {0} ∪ N. The set of rational numbers, denoted Q are all numbers that can be
represented in the form m/n with m,n ∈ Z.

Exercise 75. NFQ Show Z, Z+ and Q are countably infinite sets.

The set of reals or real numbers, denoted IR contains Q as well as all limits of sequences of
elements in Q. A useful subset of the reals is the interval [0, 1] := {x : 0 ≤ x ≤ 1}. Any element
of [0, 1] can be represented by an infinite sequence of binary digits such as,

0010100111010011110101010110101 . . . ,

by this representation it can be shown that [0, 1] and hence IR is not a countable set.
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Theorem 5. The set IR is not countable.

The above theorem is proved by assuming that [0, 1] is countable and thus its elements can
be ordered. Then showing that the number represented by flipping the i’th digit of the i’th
element of the ordered sequence does not equal any of the ordered numbers, yet is an element
of [0, 1].
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