
MATH4406 (Control Theory)
Unit 1: Introduction to “Control”
Prepared by Yoni Nazarathy, August 11, 2014

Unit Outline

I The many faces of “Control Theory”

I A bit of jargon, history and applications

I Focus on inherently deterministic systems
I Briefly diving into:

I The PID Controller
I Linear Control Theory
I Model Predictive Control

Units 2,3,4,5,6,7 – Inherently stochastic systems (Markov Decision
Processes) - starting in third hour of today

Unit 8 – Open loop deterministic continuous optimal control
(calculus of variations) – also taught in MATH3404 (called at UQ:
optimization theory)

Unit 9 – Closure

Assessment (for units 1, 8, 9) : Only through course summary

What is “Control Theory”

Hard to find a precise definition. So here are some terms very
strongly related:

I Dynamical systems and systems theory

I Linear vs. non-linear systems

I Inherently deterministic vs. inherently stochastic systems

I Open Loop vs. Closed Loop (Feedback)

I SISO vs. MIMO

I Trajectory tracking and/or Disturbance rejection

I Stabilization vs. fine tuning vs. optimization

I Adaptive control and learning

I Partial and/or noise observations

I Chemical systems, Electrical systems, Mechanical systems,
Biological systems, Telecommunications, Robotics and
Artificial Intelligence, Systems in logistics...

Who does “Control Theory”

I Engineering control - descriptive tools - simple SISO systems
(e.g. PID controllers)

I Engineering control - supervisory control (sensors, displays,
status, etc....)

I “Advanced engineering control” (state space) - planes,
helicopters, etc... etc...

I Control theory research:

1. Electrical, chemical, mechanical engineers
2. Applied mathematics
3. IEEE Control Systems Society (http://www.ieeecss.org)
4. AUCC - Australian Control Conference

(http://www.aucc.org.au/AUCC2014/)
5. Operations Research, Applied Probability etc...
6. In recent years: Optimization, real-time computation and

control have converged

Inherently deterministic systems

A system (plant)

I state: x ∈ Rn

I input: u ∈ Rm

I output: y ∈ Rk

The basic system model:

ẋ(t) = f
(
x(t), u(t), t

)
,

y(t) = h
(
x(t), u(t), t

)
.

Or in discrete time,

x(n + 1) = f
(
x(n), u(n), n

)
,

y(n) = h
(
x(n), u(n), n

)
.

Open loop control

ẋ(t) = f
(
x(t), u(t), t

)
,

y(t) = h
(
x(t), u(t), t

)
.

Choose a “good” input u(t) from onset (say based on x(0)).
y(t) is not relevant.

Open loop optimal control deals with choosing u(t) as to,

min J
(
{x(t), u(t), 0 ≤ t ≤ Tmax}

)
,

subject to constraints on x and u.

E.g. Make a “thrust plan” for a spaceship

Closed loop (feedback) control

ẋ(t) = f
(
x(t), u(t), t

)
,

y(t) = h
(
x(t), u(t), t

)
.

Choose (design) a controller (control law), g(·):

u(t) = g
(
y(t), t

)
.

The design may be “optimal” w.r.t. some performance measure, or
may be “sensible”

Combination of open loop and closed loop

Consider a jet flight from Brisbane to Los Angeles (approx 13 : 45)

ẋ(t) = f
(
x(t), u(t), t

)
Dynamical system modeling: What are possibilities for x? For u?
Why is the problem time dependent?

Open loop methods can be used to set the best u(·). Call this a
reference control. This also yields a reference state. We now have,
xr (t) and ur (t) and we know that, if the reference is achieved then
the output is,

yr (t) = h
(
xr (t), ur (t), t

)
.

We can now try to find a controller g(·),

u(t) = g
(
y(t), t, xr , ur

)
,

such that ||x(t)− xr (t)|| “behaves well”.

Combination of open loop and closed loop, cont.

The trajectory tracking problem of having ||x(t)− xr (t)|| “behave
well” is essentially called the regularization problem. “Behaving
well” stands for:

I Ideally 0

I Very important: limt→∞ ||x(t)− xr (t)|| = 0 (stability)

I Also important: How ||x(t)− xr (t)|| is regulated to 0. E.g.
fast/slow. E.g. with many osculations or not

Many (perhaps most) controllers are “regulators” and are not even
associated with a trajectory, instead they try to regulate the
system at a set point. E.g. cruise control in cars, control the
rotational speed of a hard-disk ...

Optimal Trajectory Plans

Calculus of Variations and Pontryagin’s Minimum Principle

Calculus of variations is a classic subject dealing with finding
optimal functions. E.g., find a function, u(·) such that, u(a) = au,
u(b) = bu and the following integral is kept minimal:

∫ b

a

√
1 + u′(t)2

u′(t)
dt.

Question: What is the best u(·) if we remove the denominator?

Pontryagin’s Minimum Principle is a result allowing to find u(·) in
the presence of constraints, generalising some results of the
calculus of variations, yet suited to optimal control.

Stability

Lyapunov Stability Theory

Here we “leave” control for a minute and look at the autonomous
system:

ẋ(t) = f
(
x(t)

)
.

Note that this system may be the system after a regulating control
law is applied.

An equilibrium point is a point x0, such that f (x0) = 0.

Lyapunov’s stability results provide methods for verifying if
equilibrium points are stable (in one of several senses).

One way is to linearize f (·) and see if the point is locally stable.

Another (stronger) way is to find a so called Lyapunov function
a.k.a. summarizing function or energy function.

Back to a bird-eye’s view on the field

Key Developers of (Highly Used) Ideas and Methods

Up to 60’s:

I E. J. Routh

I A. M. Lyapunov

I H. Nyquist

I W. R. Evans

I R. Bellman

I L. S. Pontryagin

I R. E. Kalman

I The developers of Model Predictive Control (MPC) - Still
active today

Implementations

I Mechanical

I Analog

I Digital

The Basic Feedback Loop

I plant

I controller

I actuators

I sensors

Book: “Feedback and Control for Everyone”, Pedro Albertos, Iven
Mareels (2010). Avail on-line at UQ library.

Some LTI, SISO, Plant Examples

Car Driving Straight (Newton’s law: F = ma)
I F - Force
I m - Mass
I a - Acceleration

Assume:

I Rotational inertia of the wheels is negligible.
I Friction retarding the motion of the car is proportional to the

car’s speed with constant β (in practice it may be
proportional to speed squared). If x(t) is location:

u(t)− βẋ(t) = mẍ(t)

Set y(t) = ẋ(t),

ẏ(t) +
β

m
y(t) =

1

m
u(t).

H(s) =
Y (s)

U(s)
=

m−1

s + βm−1
.

Pendulum
Assume:

I θ(t) is angle relative to hanging down position.

I Mass m, Length `, Gravity g

I Torque with direction of θ, u(t)

u(t)−mg` sin θ(t) = m`2θ̈(t)

This is non-linear, yet for θ = 0, sin θ ≈ θ So we get,

ÿ(t) +
g

`
y(t) =

1

m`2
u(t)

set ωn =
√
g/`,

H(s) =
Y (s)

U(s)
=

m−1`−2

s2 + ω2
n

.

Stability criteria

Given, Hc(s) or H(s) = N(s)
D(s) the standard way to check for

stability is to solve,
D(s) = 0,

and see all solutions are in the LHP.

Routh-Hurwitz is an alternative (today still good for analytic
purposes).

Another approach is Nyquist’s Stability Criterion.

Profiling the Step Response
Specification for type-1 regulators with respect to “change of
reference point”:

r(t) = 1(t).

If (controlled system) is BIBO then, limt→∞ y(t) = 1. But how
does it get there?

I Rise time - The time it takes the system to reach the
“vicinity” of the new point: tr = inf{t : y(t) = 0.9}.

I settling time - The time it takes the transients to “decay”:
ts = inf{t : |y(τ)− 1| ≤ 0.01, ∀τ > t}.

I overshoot - The maximum amount the system overshoots its
final value divided by its final value. If it exists:
Mp = max{y(t)}.

I peak time - The time it takes to reach the maximum
overshoot, tp = inf{t : y(t) = Mp}.

There is often a tradeoff between low Mp and low tr .

Basic Engineering Control (LTI, input-output, SISO)

Signals and Systems

I Essentials of “Signals and Systems” (no state-space yet)

I Convolutions, integral transforms (Laplace, Fourier, Z...) and
generalized functions (δ)

Consider a system with plant transfer function, H(s), and negative
feedback controller, G (s). The transfer function of the whole
system is:

Q(s) =
H(s)

1 + G (s)H(s)
.

Elements of Classic Engineering Control

The main object is,

Q(s) =
H(s)

1 + G (s)H(s)
.

I The “objectives” in controller (regulator) design

I PID Controllers (Proportional, Integral, Derivative)

I The Nyquist Stability Criterion

Goals in Designing G

I Stability:Hc(s) should be stable system

I Regulation (for R(s) = 0): E (s) small. Properties of the
disturbances W (s) and V (s) can be taken into consideration

I Tracking (for R(s) 6= 0): For “desired” references, R(s), the
error E (s) should be “small”

I Robustness: Model error of the plant, e.g. the plant
G ′(s) = G (s)

(
1 + δ(s)

)
should still be controlled well.

I Simplicity: Often a three parameter PID controller (or even
simpler) “does the job”

I Practicality: Staying within dynamic limits, not using too
many components, etc...

Controlling for Stability and Robustness

In case H(s) is not stable. A first goal in designing G (s) is to
achieve stability of

Hc(s) :=
H(s)

1 + H(s)G (s)
.

It is further important from the view point of disturbances and
robustness to have good stability margins. Common are:

I gain margin

I phase margin

The PID (Proportional – Integral – Derivative) Controller

Parameterized by kP , kI and kD

Controller Transfer Function:

G (s) = kP + kI
1

s
+ kDs

Closed Loop System Transfer Function:

Hc(s) =
H(s)

1 + (kP + kI
1
s + kDs)H(s)

The “tunining game”: Given H(·) set the three coefficients such
that Hc(·) is as you wish.

Linear State Space Systems

Linear State-Space Systems and Control

The main object of study is,

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).

Together with the discrete time analog.

I When can such system be well controlled (e.g. stabilized)?

I Linear state feedback controllers are of the form u(t) = Ky(t)
for some matrix K

I Is there a way to estimate x based on y? The Luenberger
observer

I The Kalman decomposition

This was a major area of study in the course, two years ago.

Systems with Stochastic Noise

The Kalman filter deals with the following type of model:

x(n + 1) = Ax(n) + Bu(n) + ξ1(n),

y(n) = Cx(n) + Du(n) + ξ2(n),

where ξi are noise processes, typically taken to be Gaussian.

The Kalman filter is a way to optimally reconstruct x based on y .
It is a key ingredient in many tracking, navigation and signal
processing applications.

Related is the Linear Quadratic Gaussian Regulator (LQG) which
generalises the LQR by incorporating noise processes as in the
Kalman filter.

Controllability and Observability

These are regularity properties:

The system is controllable if there exists a u(·) that can drive the
state anywhere desired in finite time. This is known to be
equivalent to a rank property of A and B.

The system is observable if given the observation y(·) over some
finite time, it is possible to reconstruct the initial state, x(0).

State Feedback Controller

With u(t) = Kx(t), we get,

ẋ(t) = (A + BK)x(t).

If system is controllable, there exists K that sets eigenvalues of
A + BK as we wish.

Luenberger Observer

Make a “mock system” based on input, u and observed output, y .

˙̂x(t) = Ax̂(t) + Bu(t)− K
(
Cx̂(t) + Du(t)− y(t)

)
= (A− KC)x̂(t) + stuff

Look at e(t) = x(t)− x̂(t). We get,

ė(t) = (A− KC)e(t).

If system is observable there exists K that sets eigenvalues of
A− KC as we wish.

Optimal Control in Linear State Space Systems

LQR

I The Linear Quadratic Regulator (LQR) problem deals with
fully observed linear dynamics: ẋ(t) = Ax(t) + Bu(t), and
can be posed as follows:

min
u(·)

x(T)′Qf x(T) +

∫ T

0
x(t)′Qx(t) + u(t)′Ru(t)′dt

I It is beautiful that the solution is of the form u(t) = Kx(t)
(linear state feedback) where the matrix K can be found by
what is called a Ricatti equation

Dynamic Programming can be used for LQR
Bellman’s principle of optimality can be briefly described as follows:

If x-y-w-z is the “optimal” path from x to z then y-w-z is the
optimal path from y to z.

This works for systems of the form ẋ(t) = f
(
x(t), u(t)

)
and a cost

function:

J
(
x(t0), t0

)
= min

u

∫ T

t0

C
(
x(s), u(s)

)
ds + D

(
x(T)

)
.

Bellman’s optimality principle implies that the optimal cost
satisfies:

J∗
(
x(t), t

)
= min

u
C
(
x(t +dt), u(t +dt)

)
dt +J∗

(
x(t +dt), t +dt

)
.

This leads to the Hamilton-Jacobi-Bellman PDE.

The “L” part of LQR

The same old linear dynamics:

ẋ(t) = Ax(t) + Bu(t), or x(k + 1) = Ax(k) + Bu(k),

A ∈ Rn×n, B ∈ Rn×m, x(0) = x0.

Assume,

rank
(
con(A,B) :=

[
B,AB,A2B, . . . ,An−1B

])
= n,

i.e., the system is controllable (reachable)

So in the continuous time case, we can drive the state from x0 to
any state in any finite time, T . For the discrete time case it can be
done in at most n steps.

The “Q” part of LQR

A cost structure:

J(u) =

∫ T

0

(
x(t)′Q x(t) + u(t)′ R u(t)

)
dt + x(T)′Qf x(T),

or,

J(u) =
N−1∑
k=0

(
x(k)′Q x(k) + u(k)′ R u(k)

)
+ x(N)′Qf x(N).

The time horizon, T or N, can be finite or infinite.

The cost matrices satisfy,

Q = Q ′ ≥ 0, Qf = Q ′f > 0, R = R ′ > 0.

The “R” part of LQR

Since cost structure is,

J(u) =

∫ T

0

(
x(t)′Q x(t) + u(t)′ R u(t)

)
dt + x(T)′Qf x(T),

or similar for discrete time, we see that we are trying to find a
control u(t), t ∈ [0,T] that will “regulate” the system “at 0”. The
payment is “quadratic” for both “state” and “control effort”.

Typical choices for Q (or Qf) are,

Q = 11′ or Q = I or Q = diag(qi),

where qi ≥ 0.

A typical choice for R is R = diag(ri), with ri > 0.

The time horizon, T or N is often taken as ∞.

The LQR Success Story
It turns out that the optimal control is a linear state feedback
control law. In the continuous time case,

u(t) =
(
− R−1B ′P(t)

)
x(t),

where the n × n matrix P(t) is the solution of a Riccati differential
equation.

In the discrete time case,

u(k) =
(
−
(
R + B ′P(k + 1)B

)−1
B ′P(k + 1)A

)
x(k),

where the n × n matrix P(k) is the solution of a Riccati difference
equation.

Further if T =∞ (or N =∞) the terms P(t) (or P(k)) are
replaced by a constant matrix that is a solution of associated
Riccati algebraic equations (different versions for discrete and
continuous time).

The Riccati Equation - Continuous Time

This is the Riccati matrix differential equation used to find the
state feedback control law of continuous time LQR. Solve it for
{P(t), t ∈ [0,T]}

−Ṗ(t) = A′P(t) + P(t)A− P(t)BR−1B ′P(t) + Q, P(T) = Qf .

Observe that it is specified “backward in time”.

If T =∞ the steady state solution P of the Riccati differential
equation replaces P(t) in the optimal control law. This P is the
unique positive definite solution of the algebraic Riccati equation,

0 = A′P + PA− PBR−1B ′P + Q.

The optimal control is:

u(t) =
(
− R−1B ′P(t)

)
x(t) or u(t) =

(
− R−1B ′P

)
x(t).

The Riccati Equation - Discrete Time
This is the Riccati matrix- difference equation. Solve it for
{P(k), k ∈ {0, . . . ,N}}

P(k) = Q + A′P(k + 1)A

− A′P(k + 1)B
(
R + B ′P(k + 1)B

)−1
B ′P(k + 1)A,

P(N) = Qf .

If N =∞ the steady state solution P replaces P(k). This P is the
unique positive define solution found by the algebraic Riccati
equation,

P = Q + A′PA− A′PB(R + B ′PB)−1B ′PA.

The optimal control is:

u(k) =
(
−
(
R+B′P(k+1)B

)−1
B′P(k+1)A

)
x(k), or u(k) =

(
−
(
R+B′PB

)−1
B′PA

)
x(k).

LQR in MATLAB

Very simple:
[K ,S , e] = lqr(SYS ,Q,R,N)

N is an additional type of cost term,

2x(t)′Nu(t).

The return values:
−K is the state feedback gain matrix.
S is the solution of the algebraic Riccati equation
e are the resulting closed loop eigenvalues (i.e. the eigenvalues

of A− BK).

In practice this is often the preferred way of deriving an initial
controller before making finer refinements (based on simulations
and tests).

Model Predictive Control

MPC Overview
Model Predictive Control (MPC), also called “receding horizon
control”, works as follows:
For a plant modeled as, x(k + 1) = f

(
x(k), u(k)

)
an input,

u·|k =
(
u(k|k), u(k + 1|k), . . . , u(k + N − 1|k)

)
is determined at each time slot k based on x(k). The input is
selected as to minimize predicted costs over the “planning horizon”
k , k + 1, . . . , k + N. Here N is the length of the planning horizon.
Once u|k is determined, the control u(k |k) is applied and at time
k + 1 the process is repeated.

For the calculation made during time k , denote the “predicted
state” (due to u·|k) by x(k + 1|k), x(k + 2|k), . . . , x(k + N|k).
Observe that in general if N <∞, u(k + 1|k) 6= u(k + 1|k + 1)
even though (without disturbances/noise),

x(k + 1) = f
(
x(k), u(k |k)

)
= x(k + 1|k).

MPC Notes

Model Predictive Control (MPC) is a sub-optimal control method
that “makes sense”. If you think about it, this is in a sense how we
(individuals) sometimes make decisions.

It originated from the chemical process control industry in the 80’s.
There each time step is in the order of a few hours. With the
advent of cheap fast computers - it is now often the method of
choice for real-time controllers also (e.g. time step every 10
milliseconds). The challenge is to solve the optimization problem
for u·|k quickly.

It is not always the case that increasing the time horizon “N” is
better.

The stability of systems controlled by MPC is in generality not
trivial.

Linear Quadratic MPC

Model:
x(k + 1) = Ax(k) + Bu(k).

Cost:

J(u) =
N−1∑
k=0

x(k)′Q x(k) + u′(k)R u(k) + x ′(N)Qf x(N).

so far... exactly LQR. But... add constraints:

F

[
x(k)

u(k)

]
≤ b.

In practice there are often hard constraints on the state and the
control. Hence linear quadratic MPC is in practice very useful.

Formulation as a Quadratic Program (QP)

At time k (taken to be 0 for simplicity), given a measured (or
estimated) state x(k) we need to solve,

minu(0),u(1),...,u(N−1)

N−1∑
k=0

x(k)′Q x(k)+u′(k)R u(k)+x ′(N)Qf x(N)

s.t. x(k + 1) = Ax(k) + Bu(k) and,

F

[
x(k)

u(k)

]
≤ b.

How can we pose this as an optimization problem (over finite
vectors) just in the mN variables u(0), . . . , u(N − 1)?

Formulation as a Quadratic Program (QP)
Use

x(1)

x(2)
...

x(N)

 =

A

A2

...

AN

 x(0)+

B 0 · · · 0

AB B
...

...
. . .

AN−1B · · · B

u(0)

u(1)
...

u(N − 1)

This converts the optimization problem of the MPC controller to
one that simply depends on the mN dimensional vector
u(0), . . . , u(N − 1).

The general form of a quadratic program (QP) is:

minzz
′Q̃z + P̃z ,

s.t. F̃ z ≤ b̃.

With a bit of (tedious rearranging) the MPC controller can then be
presented as a convex QP in mN decision variables. QPs where
Q̃ > 0 have a unique solution and are quite efficiently solvable!!!

The Closed Loop System is Non-Linear

MPC generates a “feedback” control law u(k) = g
(
x(k)

)
, where

the function g(·) is implicitly defined by the unique solution of the
QP. The resulting controlled system,

x(k + 1) = Ax(k) + Bg
(
x(k)

)
,

is in general non-linear (it is linear if there are no-constraints
because then the problem is simply LQR).

Stability of MPC

A system controlled by MPC is generally not guaranteed to be
stable.

It is thus important to see how to “modify” the optimization
problem in the controller so that the resulting system is stable.

One such method based on adding an “end-point constraint” that
forces the optimized u·|k to drive the predicted system to state 0.

Our proof is for linear-quadratic MPC, yet this type of result exists
for general MPC applied to non-linear systems.

Generalizations of the “end-point constraint method” also exist.

Other paradigms

Non-linear (hybrid) Control
Hybrid dynamical systems have a continuous component x(t)
evolving in Euclidean space but also a discrete component m(t)
evolving on discrete set. Informally, for a given “mode” m(t) = m,
x(t) evolves according to the standard (say linear) dynamics that
we know driven by Am that depends on the mode:

ẋ = Amx .

Then at the first time instance at which x(t) reaches one of several
sets, say Gm′ , the mode changes to m′ and hence the dynamics
change to,

ẋ = Am′x .

E.g. a standard thermostat....

Here also, the same control questions exists (and have been partly
answered): Stability, Controllability, Observability, Feedback
control, State Estimation and optimal control.

Adaptive Control

Here the story (a very common one in practice) is the fact that the
exact values of the plant parameters, say (A,B) are not known.
Hence the parameters need to be estimated while the system is
controlled (as opposed to off-line). In fact, some adaptive control
techniques do not try to estimate the parameters, but simply try to
control the system in an adaptive manner matching desired output
to observed output and calibrating the control law on the go.

The theory is quite well developed, yet is advanced since typically
linear plants controlled by adaptive controllers yield a non-linear
systems.

Robust Control

Here the story is somewhat similar to adaptive control – there is
plant uncertainty. Yet as opposed to developing a controller that
tries to learn the plant, a controller is designed for the “worst
case”.

E.g. take an (A,B,C ,D) system and assume that the actual A is
A + δG where G is some other matrix and δ is a scalar that is not
too big.

A main theme is then to design a controller that ensures certain
behavior (e.g. stability, optimality etc...) for a given range of δ.

Supervisory Control

This field uses a complete different set of tools: Computer science
and discrete mathematics. The idea is to control discrete event
systems with complicated (yet typically finite) state spaces. Think
for example of a complicated photo-copier machine.

There are certain scientific questions dealing with state-reduction,
computability and equivalent systems.

Moving onto inherently stochastic systems

Control of inherently stochastic systems

The system
ẋ = Ax + ξx ,

is inherently deterministic (e.g. A is modeled from Newton’s laws)
yet is subject to random disturbances.

Other systems arising in telecommunications, population models
and logistics are well modeled as inherently stochastic systems
(Markov Chains).

The field of Markov Decision Processes deals with finding optimal
feedback laws for such systems – yet the problem is often with
computation (curse of dimensionality).

Approximate dynamic programming for such systems is currently a
hot research topic. Another related topic is stability analysis of
such systems.

Control of stochastic queueing networks

k=1

Server i=1

k=3

k=2

Server i=2

0 10 20 30 40

0

500

1000

1500

2000

0 10 20 30 40

0

500

1000

1500

2000

0 10 20 30 40

0

500

1000

1500

2000

0 10 20 30 40

0

500

1000

1500

2000

0 10 20 30 40

0

50

100

150

200

0 10 20 30 40

0

50

100

150

200

0 10 20 30 40

0

50

100

150

200

0 10 20 30 40

0

50

100

150

200

0 10 20 30 40

0

5

10

15

20

0 10 20 30 40

0

5

10

15

20

0 10 20 30 40

0

5

10

15

20

0 10 20 30 40

0

5

10

15

20

