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A SURVEY OF PARTIALLY OBSERVABLE MARKOV 
DECISION PROCESSES: THEORY, MODELS, AND 

ALGORITHMS* 

GEORGE E. MONAHANt 

This paper surveys models and algorithms dealing with partially observable Markov 
decision processes. A partially observable Markov decision process (POMDP) is a generaliza- 
tion of a Markov decision process which permits uncertainty regarding the state of a Markov 
process and allows for state information acquisition. A general framework for finite state and 
action POMDP's is presented. Next, there is a brief discussion of the development of 
POMDP's and their relationship with other decision processes. A wide range of models in such 
areas as quality control, machine maintenance, internal auditing, learning, and optimal 
stopping are discussed within the POMDP-framework. Lastly, algorithms for computing 
optimal solutions to POMDP's are presented. 
(MARKOV DECISION PROCESSES; PARTIALLY OBSERVABLE; SURVEY) 

1. Introduction 

This paper surveys models and algorithms dealing with partially observable Markov 
decision processes (POMDP's). A POMDP is a generalization of a Markov decision 
process (MDP) which permits uncertainty regarding the state of a Markov process and 
allows state information acquisition. Howard [25] described movement in an MDP as 
a frog in a pond jumping from lily pad to lily pad. Adapting Vazsonyi's [72] analogy in 
a discussion of stochastic automata, we can view the setting of a POMDP as a fog 
shrouded lily pond. The frog is no longer certain about which pad it is currently on. 
Before jumping, the frog can obtain information about its current location. In the 
following paragraphs we will show that the generalization is nontrivial and admits a 
wide range of important decision problems arising in many contexts. 

The generalization of MDP's to POMDP's is significant in problem settings where 
state uncertainty is a central issue that can not be assumed away. Examples in such 
diverse areas as machine maintenance, quality control, learning theory, internal 
auditing, optimal stopping, and others given in Section 4 illustrate the wide range of 
problems that can be modeled as POMDP's. The key feature of all these models is the 
presence of state uncertainty and its impact on the optimal choice of actions. It will be 
shown that such uncertainty can often have surprising consequences on the structure 
of optimal decision rules. 

Partially observable models are typically more difficult to analyze than their MDP 
counterparts. The added generality is not a free good. In many applications incorpo- 
rating the theory of (perfectly observable) MDP's, a primary goal of the analysis is to 
determine structural properties of the optimal policy (and the optimal value function). 
(See, e.g., Heyman and Sobel [23, Chapters VI-VII].) Economically appealing assump- 
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2 GEORGE E. MONAHAN 

tions regarding elements of the model are translated into intuitively appealing struc- 
tural results. As a classic example, convexity of the one period cost function in a 
stochastic multi-period inventory problem with setup costs yields (s, S)-type optimal 
ordering policies [28]. In perfectly observable machine replacement problems condi- 
tions on the one-period transition matrix, equivalent to first-order stochastic domi- 
nance, translates into repair policies that are characterized by a single parameter, i.e., 
are of the control-limit type [15]. 

In POMDP models structural results such as those suggested above are much more 
difficult to obtain. All of the intricacies found in perfectly observable sequential 
decision problems remain. Additional complications are added due to two sources of 
potential error in determining the current underlying (core) state. The first is the 
uncertainty about the initial state of the unobservable process. The second and most 
significant is the possible error in the information regarding the underlying state of the 
process. The presence of the two types of uncertainty in the model typically destroys 
structural properties. In most applications of POMDP's, structured policies are optimal 
only when it is possible to obtain perfect core state information. When there are 
imperfect observations the structure of the optimal policy is invariably lost. Examples 
of this phenomenon in very simple two-state models are given in ?4. 

The lack of structure of many optimal policies in POMDP models may not be a 
serious operational issue. Of course the use of structural results in algorithms for 
computing optimal policies is ruled out. There may, however, be sub-optimal struc- 
tured policies that are "good enough" when balanced against computational effort. 
This is an area for further research. 

The generalization of MDP's to POMDP's also results in added computational 
difficulties. In a finite state MDP, an optimal policy can be expressed in simple tabular 
form, listing optimal actions for each state. When state uncertainty is introduced into 
the same model, we have a POMDP with an enlarged set of states. The optimal policy 
is now defined over a continuum of states. The path-breaking work of Sondik has 
mitigated many of the problems inherent in the computation of optimal policies for 
POMDP's. His algorithms are discussed in some detail in ?5. Efficient computational 
procedures exist for short, finite horizon POMDP's. Less efficient procedures exist for 
infinite horizon problems. 

The partially observable Markov decision process is formally presented in ?2. The 
main result is summarized as follows: although a partially observable process is not 
Markovian (in general), the POMDP can be formulated as a Markov decision process 
with an enlarged state space, namely the space of probability distributions over the 
underlying (partially observable) states. The usual dynamic programming recursions 
for both the finite and discounted infinite horizon models are presented. 

A brief history of the development of POMDP's is given in ?3. We also examine the 
relationship between POMDP's and stochastic automata, certain Bayesian decision 
processes, and various continuous time, partially observable stochastic processes. 

?4 contains a survey of models which either have been or could be cast in the 
partially observable framework developed in ?2. A detailed description of some 
machine replacement/quality control models is given in the first subsection. Applica- 
tions of POMDP models in several other contexts, such as accounting, optimal 
stopping, and learning are then presented. 

In ?5, various computational procedures for solving POMDP's are discussed. The 
preponderance of this section is devoted to the finite and infinite horizon algorithms 
(and their variations) developed by Sondik. 

Notational conventions are as follows: I {0, 1,2, ... }, I_ {1, 2, . . . }, Pr{.} 
denotes the probability of the event {. }, IN denotes the N-fold Cartesian product of 
the real line, 1R, and 6C| denotes the number of elements in the set C~. 
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PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 3 

2. The Finite State Partially Observable Markov Decision Process 

In this section the finite state and action space version of the partially observable 
Markov decision process is presented. 

Let X, be a random variable defined on a sample space Q, where t E I; assume X, 
takes on values in the finite set OZ-{ 1, . . . , N}. The stochastic process {Xt, t E I}, 
called the core process, is assumed to be a finite state Markov chain with stationary 
N x N transition probability matrix P = [pij], i, j E OZ. The core process is complete- 
ly described by P and the initial distribution over 'X, denoted by 7T (0) = 

(1Tl(?), ... . gN (0)), where gi (0) = Pr{X0 = i}, i = 1, . .. , N. The core process is not 
directly observable; that is, the realization of X, is not determinable with certainty at 
time t. 

Associated with Xt is a random variable Y, which takes on values in a finite 
"message" space ={ 1, . . ., M}. By observing Yt at time t, information regarding 
the true value of X, is obtained. The probabilistic relationship between Xt and Yt is 
known to the decision maker. Suppose that if X, = i, an observation will have message 
k with probability qik, i.e., 

qik-Pr{Yt= kjXt= i} fori&O?,k&3. (2.1) 

Define the N X M information matrix as Q = [qik] & E Z,k E T. The stochastic 
process { Yt, t E I } is called the observation process. 

A decision structure is now defined which incorporates the core and observation 
processes. Assume that the decision maker can control both the observation and core 
processes by choosing actions. Let C be a finite set denoting all of the actions available 
to the decision maker. Let P(a) = [p,(a)] denote the "law of motion" of the core 
process when action a EE ( is chosen. That is, if i is the current state and action a is 
chosen, the core process moves to a new state j with probability p, (a), i, j EE . 
Similarly, let Q(a) = [qij(a)] denote the relationship between the observation and core 
processes when a EE e is chosen. 

Let m, E 9k. and a, E C denote the value of Y, observed and the action taken at time 
t, respectively. The data available for decision making at time t is denoted by 
dt-=_ (7T(O), ml, a,, ... , at 1 Mt). 

Define Ti (t) Pr { Xt = i I dt ) and let 

7T(t) 
= [qTl(t), ... 

* ,TN(t) 

7T(t) E xS -( X RN 2X = 1, Xi > 05 i = 15 ....* N) 

is called the information vector. Using Bayes' formula, the transformation of the 
information vector from time t to t + 1 is specified as: 

Ti7T(t) Jj5 at)--7i(t + 1) = Pr { Xt+ I = i i dt+ =(dt, at, mt+ =j)) 

qij(at) E Pki(at)7k(t) 
= kE. ,- i- 1, . . ., N, (2.2) 

qE q(at) EPkl (at) 7Tk 

l H.oX k c- L. 

where qij(at) and pki(at) are the (i,j)th and (k,i)th elements of Q(a,) and P(a,), 
respectively. 

The following result is readily established (e.g., see [9], [65], [68]): 

g (t) summarizes all of the information necessary 
for making decisions at time t. 
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4 GEORGE E. MONAHAN 

It is customary to denote by st, say, all the information required for decision making at 
time t. Then, from the result cited above, st= '7(t). The following theorem is also 
well-known (e.g., see [4], [6], [48], [59], [65]): 

THEOREM 2.1. For any fixed sequence of actions a,, . .. , at E 6, the sequence of 
probabilities { (t), t E I } is a Markov process; that is, if r7 C S N' then 

Pr{ 7(t + 1) E rJ I (O)5 . . . , v7(t),at) = Pr{v7(t + 1) E rlI 7(t),at}. 

With these results, the POMDP can be converted into an equivalent (completely 
observable) Markov decision process. 

Note. The core process was defined on a finite state space. Since that process is 
unobservable, an equivalent observable Markov process is now defined on an uncount- 
able state space, namely the (N - 1)-simplex in RN. 

For notational convenience, let 

-y(7T(t),j, at) =Eqij(at) *EPki(at)7Tk(t)- 
iet kC 

Then -y(vg(t), j, a,) = Pr { Y,+1 =1 j st = g (t), at}, which is the denominator of (2.2). 
Assume that there is a reward function, say r: OL x 2 -* lR, where ri(at) is the 

immediate expected reward that is earned at time t if the core process is in state i and 
action at is taken; the expectation is with respect to the conditional probability 
measures associated with the core and observation processes. The immediate reward 
could depend upon the current state of the core process, the next state of the core 
process (that is, there may be a reward associated with transitions from state i to statej 
in the core process), the outcome of the observation, and the action taken. Notation- 
ally, 

N M 

ri(at)= E E R(i,j,k,at)pijqjk 
j=l k=l 

where R : % X > 9T X 6% -x C R is a bounded function, with R(i, j, k, a,) representing 
the immediate reward when action at is taken, the core process is in state i, moves to 
state], and output k is observed. 

For ease of notation let r(at) _ [r,(at), . .. , rN(a,)] and"." denote the usual inner 
product operator. Then, if the state of the POMDP is s, and action a, is taken, an 
immediate expected reward of 

E[ r(Xt, at) I s, = 7T] = 7T * r(a1) (2.3) 

is obtained. 
A schematic representation of the decision process is given in Figure 1 (cf. Sondik 

[65, Figure 2.5]). 
Note. Some authors view the sequence of events comprising a POMDP slightly 

differently. In some models an observation is taken and then the transition to the new 
state is made. In this presentation, movement in the chain is followed by an observa- 
tion. Although the formula for updating the information vector, eqn. (2.2), may be 
slightly different, the two views are equivalent. 

Let the function at : 5 N -* C denote a decision rule which indicates the action, 
St(T) E C to take at time t when the current state is st = T. A policy (or strategy) 6, is 
defined as a sequence of decision rules, 8 = {d,, . . ., 6 , .. . }. A strategy is said to be 
(non-randomized) stationary if it is a single function a: S N 9 , where, for any 

T E SNs aT) denotes the action to take when the state of the process is C. 
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PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 5 

FIGURE 1. A PartiallyObsaMOVe in Marko D 

operatione givenarkv 8.i Oupu 

Theoptimalvalue cT defordine do Using Qa(AT) 

q,(T)~~~~~~ T->| I-T+1I-- 

I 

FIGURE 1. A Partially Observable Markov Decision Process. 

Given strategy 8 is employed and the process starts at iT f SN define the expected 
discounted infinite horizon reward of the POMDP as: 

Vs (7) = Es[ I P tr(X= , a( ) f So =a 7l 7T E SN (2.4) 

where 0 < o < i is the discount factor, and Et denotes the conditional expectation 
operation given 8. 

The optimal value function V'a( ) can then be defined as: 

V (7T) = SUP V8(7T)5 7TE N 

A strategy 8* is said to be ,8-optimal if 

V: ,8 <*(-7T) for all 7T C SN (.5 

The objective of the decision maker is to determine a ,(-optimal strategy. 
A well-known result concerning the optimal value function is now presented. Let 

T(7T I j, a) = [ T1(7T I j, a), ... , TN(, I j, a)] where Ti(IT I j, a) is defined in (2.2). 

THEOREM 2.2. (See, e.g., Ross [52, Theorem 6.1].) The infinite horizon /3-optimal 
value function V3 (7T) defined in (2.5) satisfies the following recursion: 

(= Max 
(7T1 r(a)+ E V8[T(7T jia)]y(jI7T a)} (2.6) 

for T E SN where r(a) is defined as above. 

The finite horizon analog of (2.6) can be defined recursively as: 

V (7T)M- aV r(O) 

V/3 (7T) =Max ( T r(a) +9/ SE 
Vn- l[ T(7TJ|j,a) ] 7(jJ 7Ta) 

This content downloaded from 130.102.158.15 on Wed, 7 May 2014 09:48:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


6 GEORGE E. MONAHAN 

where ri(0) is the terminal reward received when the core process is in state i, 
i = 1, ... , N. For n E I+, V: (wQ) denotes the maximum discounted expected reward 
that can be obtained given that the process is currently in state 7T and there are n 
periods remaining before the decision process must end. 

3. Development of POMDP's and Related Literature 

The problem of controlling random process (including Markov processes) with 
incomplete state information was initially studied by Sirjaev [61] and Dynkin [17]. 
Wald's [73] pioneering work on sequential sampling may be thought of as a special 
type of POMDP. Blackwell [10] developed an entropy measure for a partially observ- 
able Markov chain. Drake [16] developed the first explicit POMDP model. Striebel 
[68] proved the sufficiency of the information vector for a wide class of stochastic 
control problems. About the same time, Astrom [6], [7] and Aoki [4], [5] also 
formulated finite horizon POMDP's in the context of stochastic control problems. 
Generalizations of their work followed. Sawaragi and Yoshikawa [59] developed the 
theory of POMDP's with an uncountable action space and a countable core process 
state space. Rhenius [48] considered POMDP's where both the action and core process 
state spaces were Borel spaces. Furukawa [21] also considered a POMDP with an 
arbitrary core process state space and a finite action space. Striebel [69] generalized the 
Astrom-Aoki control model to more general state and action spaces. Hinderer [24] 
studied non-stationary POMDP's which have a more general reward structure than the 
model considered in this paper. In [85], White and Harrington studied the value 
function associated with any given (not necessarily optimal) policy, in a POMDP 
framework. They gave conditions which insured that the value function does not 
diminish as observation quality improves. Iosifescu and Mandl [29] and Platzman [43] 
developed conditions under which undiscounted infinite horizon POMDP's are well- 
defined. Issues dealing with the effect of information acquisition on the conditional 
distributions over the core states were studied by Rudemo [54] and Platzman [44]. 
Kaijser [30] developed conditions which insured that the limiting conditional state 
distribution converged to a measure which is independent of the initial state distribu- 
tion. 

Sondik, in his thesis [65] and subsequent papers [64], [66], was the first to address 
and resolve the computational difficulties associated with POMDP's. His algorithms 
for computing solutions to the finite and infinite horizon discounted problems are 
discussed in ?5. White [77, 78] generalized the POMDP to allow for a semi-Markov 
core process. He extended Sondik's computational procedure to compute policies for 
finite horizon POMDP's with a semi-Markov core process. 

A number of papers in the literature have explored conditions which insure that 
optimal policies have certain structural characteristics, such as monotonicity and/or 
control-limit form. Albright [1] presented conditions under which the optimal policy 
for a POMDP with a two-state core process would be monotone in the information 
vector. White [84] gave conditions which yield monotone optimal policies for finite 
horizon POMDP's where there is either perfect observability or no observability. He 
then demonstrated how these structural results simplify the computation of the optimal 
policy. Other papers dealing with structural results in certain machine replacement 
problems are discussed in the next section. 

The theory of POMDP's is now being used to aid in the solution of non-POMDP 
problems. White and Kim [86] developed algorithms for finding the set of all pure, 
stationary nonrandomized strategies for vector criterion MDP's. Hsu and Marcus [26] 
studied the problem of the decentralized control of a Markov chain. The movement of 
the chain depends upon its current state and the actions of two or more decentralized 
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PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 7 

decision makers. Each decision maker chooses an action given local information about 
the state of the unobservable chain, but agrees to share this information in the next 
period. This information pattern is referred to as One Step Delay Sharing. The 
problem is formulated as a POMDP, and results from the theory of POMDP's are 
used to establish the existence of an optimal stationary policy, and to develop 
algorithms for computing such policies. White and Schussel [87] used the theory of 
POMDP's to compute bounds and sub-optimal policies for multi-module MDP's. (A 
multi-module MDP is a system of MDP's that are linked together only through the 
cost structure.) 

One of the main characteristics of the POMDP is the transformation of the 
information vector from period to period via Bayes' rule [see (2.2)]. There is a body of 
literature dealing with Bayesian control of sequential decision processes which is only 
indirectly related to the POMDP's considered in this paper; see e.g., [21], [39], [49], 
[55], [71], and [76]. In this literature, elements of the decision process are unknown. 
The decision maker may not know, for example, the transition probability matrix 
governing the movement of the process. Information regarding the parameters of the 
objects in the model is obtained. In a POMDP, however, all the elements of the 
decision process are assumed to be known. Only information regarding the current 
state of the unobservable core process is obtained. 

There is a literature dealing with the acquisition of information for various continu- 
ous time partially observable stochastic processes. The interested reader is directed to 
see, for example, [2], [3], [8], and [20]. 

Brooks and Leondes [12] considered a special type of MDP with one stage 
information delay and computed the marginal cost associated with the delay. Al- 
though this is an MDP with incomplete state information, the form of the information 
available permits the problem to be transformed into a (perfectly observable) MDP. 

Finally, it should be pointed out that a POMDP is a special case of a stochastic 
sequential machine (SSM) (see, e.g., Paz [40]). Using the notation of Section 2, an SSM 
is defined as a quadruple, (%, i, 9T, {A (m I a)}), where {A (m I a)} is a finite set 
containing 10i1 M square matrices each of order N, such that aij(m I a) > 0 for all i 
and j and 

M N 

3 3a,(mIa)=1, i= 1, .. .,N, 
m=l j=l 

and 

A (m Ia) =[a,(m Ia)]. 

The SSM is a generalization of the POMDP model presented in ?2, in that a,(m i a) 
represents the probability that the core process moves to state j and the message 
variable has value m given the core process is currently in state i and action a is taken. 

The theory of probabilistic automata (which includes the study of SSM's) has not 
yet been specialized to the study of POMDP's. However, Platzman [42], [45] consid- 
ered ideas such as state reduction and state equivalence found in that theory, in his 
development of an algorithm to compute approximately optimal policies for infinite 
horizon POMDP's. His algorithm is discussed in ?5. 

4. Models Incorporating the Theory of POMDP's 

In this section models incorporating the theory presented in ?2 will be discussed. 
Although many of the models presented were not formulated explicitly as POMDP's, 
they all deal with the optimal control of a random process based on incomplete 
information. 
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8 GEORGE E. MONAHAN 

A. POMDP Models of Machine Replacement/ Quality Control Problems 

The quality control models in the literature can be classified on the basis of the 
source and degree of partial information. For simplicity, a general version of a 
two-state model is presented using the notation of Section 2. By placing restrictions on 
the general model, many of the models in the literature can then be discussed. The 
restriction to two core states is done for ease of exposition. Many of the models 
discussed below were formulated with three or more core states. 

The core process represents the condition of a machine which is deteriorating over 
time. The true condition of the machine is not known with certainty. There are two 
sources of information regarding the condition of the machine. Firstly, information 
can be obtained by observing the machine's output. Secondly, information can be 
obtained by actually inspecting the machine. The observation process of the POMDP 
consists of data generated from these sources. The actions available in any period are: 
do nothing (perhaps observe the machine's output), inspect the machine or inspect the 
machine's output, and repair (replace) the machine. 

Let i = { a1, a2, a3)}, where al denotes doing nothing, a2 denotes inspecting, and a3 
repairing. The transition and observation matrices are defined for the two-state process 
(state 1 "good" condition, state 2 "bad" condition) as: 

[ 1-7 y] [ 1- 1] lj1 a2 I1a2 

0 < y < 1, and 0 < ai < 1, i 1, 2, 

P(2) = 
0 1 ' (2) =[1 ' 

'2 
]' 

0? v1 1,i = 1,2, 

Note. An information matrix with a column of l's denotes an observation process 
that provides no information since the message observed is independent of the core 
state; the identity matrix denotes perfect information since there is a one-to-one 
relationship between messages and core states. 

The identical rows of P(a3) denote the possible deterioration of a new machine. 
Girshick and Rubin [22] were the first to consider a variation of the problem given 

above. If observation of the machine's output is costly (or destructive) a rule should 
indicate not only when to repair the machine but should also indicate which items to 
inspect. In their model, a, = a2 = 1 (implying no information is available if the "do 
nothing" action is selected), and v1 = v2 = 1 (implying perfect information is available 
if the "inspection" action is selected). Conjectures they made concerning the form of 
the optimal maintenance policy were shown to be false (via a counter-example) by 
Taylor [70], who considered a replacement model in a general setting. 

Klein [33] also considered a variation of the non-100% inspection case. His approach 
was somewhat different in that a new completely observable problem was formulated 
which modeled periodic inspection. Decisions were of the form "repair now, but do 
not inspect in the next m periods." 

Based on the completely observable model of Derman [15] (aip = a2= 1, a2 not 
permitted), Eckles [18] and Ross [53] formulated POMDP's for a problem similar to 
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PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES 9 

Optimal 
Action: 

Al A2 Al A3 

7T 7T2 T3 XT =PR(X = 2) 
0 1 

FIGURE 2. Ross' Two-State Optimal Inspection/Replacement Policy. 

the non- 100% inspection problem. In terms of the general model, all three actions are 
permitted, and a, = a2 = PI = v= 1 (no information is available if action a, is taken, 
perfect information regarding the true condition of the machine is available if action a2 
is taken). 

Ross [53] characterized the optimal inspection/maintenance policy. In particular, he 
showed that for the two-state core process, the optimal policy has at most four regions. 
(See Figure 2). Ross also gave conditions on the parameters which would insure that 
7- = 7T2, i.e., that inspecting would never be optimal. 

Ehrenfeld [19] also examined various aspects of the Derman-Ross model. He 
considered the possibility that inspection is not perfect (pi #& 1, i = 1, 2) but was unable 
to establish conditions that would insure a well-structured policy. 

White [80, 81] studied a problem which is very similar to the general maintenance 
problem. As a special case he considered a model where v1 = v2 = 1 but aoi #7 1, i = 1, 2, 
thus generalizing Ross' model. He proved that the optimal policy has the form 
depicted in Figure 2. The general partially observable model (pi # 1, ai i, i = 1, 2) 
was also discussed. However, as in the Ehrenfeld paper, the characterization of the 
optimal policy remained an open question. 

Conditions that guaranteed optimal control-limit policies for a model with imperfect 
observability were ultimately introduced by White [83] and represent a significant 
contribution to the literature. The new condition that was required is difficult to 
interpret. The demonstration of the control-limit structure used Porteus' [47] results on 
the optimality of structured policies in sequential decision problems. White [82] also 
demonstrated the optimality of structured policies for the special cases of perfect and 
no observability in a machine replacement setting. 

Rosenfield [50], [51] considered yet another variation of the general model. He 
defined a process which has a state space consisting of pairs of nonnegative integers 
denoted by (i, k) where i is the condition of the machine and k is the number of 
periods which have elapsed since it was known for certain that the machine was in 
state i (and hence is somewhat similar to the Klein model discussed earlier). Rosenfield 
proved that an optimal maintenance policy is monotonic in the following sense: the 
optimal policy is defined by control-limit numbers k*(i), i = 1, . .. , N, which are 
nondecreasing in i, where, for each state (i, k), repair is done only if k > k*(i). 

Wang [74], [75] discussed various forms of the general model (all of them precluding 
any form of inspection action a2) under weaker conditions on the parameters. He 
proved that a control-limit-type policy is still optimal. A procedure he used to compute 
such a policy is discussed in the next section. 

Pierskalla and Voelker [41] give an excellent review of maintenance models which 
includes a section on models with incomplete information. 

B. Other POMDP Models 

Kaplan [31] applied the basic results of the machine inspection/replacement prob- 
lem to a cost control problem in accounting. He assumed that an operating segment of 
a firm can be in one of two states: state 1 indicates that the costs incurred by the 
segment are "in control," meaning that management can not affect (reduce) the costs; 
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state 2 indicates that costs being incurred are "out of control"-management action 
can be taken to reduce costs. Management has only two alternatives: it can do nothing 
or it can take corrective action at some cost. As in the analogous machine replacement 
problem, the optimal policy was shown to be of the control-limit type. 

Analogously, Hughes [27] modeled the internal control of a corporate control system 
as a POMDP. Using Ross' [53] quality control model, Hughes viewed the core process 
as the level of effectiveness of internal control. Information pertaining to the effective- 
ness of control can be obtained through an internal audit. The actions available are: 
do nothing, audit (corresponding to inspecting in the Ross model), and restore 
(analogous to the replace action in the quality control context). Hughes did not 
develop any new alternative results for the POMDP used in this audit-timing context. 

Karush and Dear [32] formulated a dynamic programming model of a learning 
process which can be classified as a POMDP. A subject is to be taught m items in the 
course of n trials. The subject is assumed to be either conditioned (C) or uncondi- 
tioned (U) with respect to each of the m items; the state space of the core process 
consists of the 2' m-vectors representing all of the combinations of m-tuples of U's 
and C's and is unobservable. An action consists of presenting item i to the subject on 
trial k, k = 1, . . . , n. The observation process consists of responses of the subject 
when presented with an item or a trial. The state of the POMDP is A = (I, .. ., An) 
where Ai is the (posterior) probability that the subject is conditioned to item i, 
i = 1, . . ., m. The objective is to maximize a terminal reward which is a function of A. 
Karush and Dear proved that the following myopic policy is optimal: at trial k, given 
the current POMDP-state vector Ak = (I<, . . ., Am) present item i* where A* 
= Mini Aik; that is present the item which currently has the highest probability of being 
conditioned. 

Smallwood [62] also developed a simple two core state POMDP model of optimal 
teaching strategies. Core states represent the student's state of knowledge. One teach- 
ing strategy presents the stimulus along with the correct response. This causes the 
student to move from the no-knowledge state to the knowledge state with a known 
probability. A second teaching strategy presents the stimulus and requires a response 
from the student. The response, of course, may or may not reflect the true state of 
knowledge of the student. Given costs per trial for each strategy and given a terminal 
cost for ending the teaching session with the student in the no-knowledge state, 
Smallwood proved the piecewise-linearity of the infinite horizon value function and 
described methods for computing the optimal teaching strategy. 

Pollock [46] developed a two-state core process POMDP to model optimal search 
effort for an object that moves between two regions. Before each move, the decision 
maker can choose which region to examine in order to locate the object. Under various 
conditions that correspond to forms of perfect observability, he proved that the 
optimal search rules had special structure. Special structure could not be obtained for 
general parameter values. 

Smallwood, et al. [63] used POMDP concepts in the development of methodology 
for the analysis of health-care systems. They defined (unobservable) patient states and 
related observable states (symptoms, diagnostic data, etc.). Physician states correspond 
to states in the POMDP, that is, they are physician-specific distributions over patient 
states. Different patient state-physician state pairs are defined for various problems 
arising in the health-care area, including the design of individual medical facilities, 
regional health systems, and the funding of health-service programs. 

Given a simple network consisting of two (geographically separated) computers, 
Segall [60] studied the problem of where to locate a common data file. He assumed 
that the demand rate for the data at one of the computer sites is an unobservable 
finite-state Markov chain, while the demand rate at the other site is a deterministic 
function of time. Given costs of data storage at each site and transmission costs, a 
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FIGURE 3. An Optimal Policy, 8*(7T). 

POMDP model was formulated to determine the optimal file location over time. 
Structural properties of the optimal policy were not examined. 

In another computer network context, Platzman [42] formulated the slotted ALOHA 
problem (see [34], [35]) as a POMDP. In this problem, remote terminals communicate 
with a central computer via a channel that can carry at most one message per time 
interval. If two or more terminals attempt to transmit messages simultaneously, none 
of the messages are transmitted. Individual terminals must decide when to transmit 
based on imperfect knowledge of the status of other terminals on the network. 
Observations available for decision making in each time interval in this context are the 
outcomes of a transmission attempt. 

White [79] applied the theory of POMDP's to design questionnaires in situations 
where responses may not be truthful. 

Monahan [37] formulated a discrete-time problem of stopping in a partially observ- 
able binary-valued Markov chain as a POMDP. In this context, X, E {0, 1 } represents 
the reward received by the decision maker if the process is stopped at time t. Before 
deciding to stop or continue, the decision maker can sequentially purchase additional 
information regarding the value of Xt. The actions that are available are S, T, and C 
which denote "stop", "test" (purchase more information), and "continue" (forego X, 
and consider Xt+ ). In [37] it was shown that the optimal policy may be highly 
unstructured. Let g = Pr { Xt = 1 } denote the probability that the reward at t is "good" 
and let 8*(Qy) denote the optimal policy. It is possible for 8*(Qy) to have the form 
depicted in Figure 3 when the information regarding the current reward is imperfect. 
However, when the information indicates the core process state without error, 8*(,g) 
has the form depicted in Figure 2; see [38]. This is another example of a model where 
structural properties of the optimal policy can be determined only when perfect state 
information is available. 

Finally, we point out that there are other extensive classes of models which can be 
classified as POMDP's but will not be discussed here. They include models of search 
for a hidden object (discrete search models-see, e.g., Stone [67]), sequential sampling 
problems (see DeGroot [14] and references therein), and two- and multi-armed bandit 
problems (also DeGroot [14]). 

5. Algorithms for Solving Partially Observable Processes 

In this section computational procedures for solving POMDP's are discussed. The 
most significant work in this area has been done by Sondik [65], who developed 
Howard-like value-determination, policy-improvement algorithms for solving both 
finite and infinite horizon POMDP's. Two of Sondik's algorithms are described in 
general terms below. A modification of the finite horizon algorithm due to White [84] 
is also presented. Other computational procedures used to solve particular POMDP 
models are then mentioned. 

A. Sondik's "One-Pass" Algorithm 

The Sondik "one-pass" algorithm ([64], [65]) is used to compute the optimal policy 
and value function for finite horizon POMDP's. The one-pass algorithm exploits the 
structure of the finite horizon optimal value function Vn (.) given in (2.7). It is 
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straightforward to show that V'( (.) is piecewise-linear and convex in its argument. 
Using the notation of ?2, let 

AO= {r(0)}, A = a : a = r(a) + E P(a) Qk (a)ak, a kE Anl,aE}, 

where Qk(a) is the N x N diagonal matrix formed from the kth column of Q(a); that 
is, Q k(a) = Qik(a), i E X and k E t. Then 

Vn (q7) = Max (7T oa : a E An)A}. (5.1) 

For any n E I, An is a finite set. However some of the a-coefficients in the set may be 
dominated by others and can be removed. To find the minimal set of a-coefficients 
that define Vn (* ), solve the following linear program for each a E An: 

Min (x - Ta: x > 7 o a',a' E A, E 

If x #' 0, remove a from An. 
The optimal strategy when the current state is g and there are n periods remaining is 

now easily determined: find the index j* that maximizes 7T aj, aj E An. Then 8*(,W) 
aj*. 
White [84] modified the one-pass algorithm to exploit known structural properties of 

the optimal policy for certain classes of POMDP's, thus making the algorithm more 
efficient. The modified algorithm restricts the space of feasible policies to those which 
are (in some sense) isotone (monotonically nondecreasing). Additional structure is also 
placed on the POMDP. The core process state space is assumed to be a partially 
ordered space (n, < 4) where n is countable. The order relation < n induces a partial 
order on SN' denoted <,; i.e., (SN5 <,) is a partially ordered space. The action space 
e, is assumed to be a finite linearly (totally) ordered space (e, < A). If 7T1, 7T2 E SN are 
such that 7T < 7T2 implies 8(7T1) < ASa7T2), then 8( * ) is called an isotone policy. Condi- 
tions which guarantee optimal isotone policies also insure that the optimal infinite 
horizon value functions are monotone; i.e., for qT1' 2 E SN if 7TI <1T25 then V' (1i1) 
< Vn O92), n = 0, 15 .... The White modification of the one-pass algorithm uses the 
added structure in two ways. Firstly, regions of the state space over which the optimal 
value function is linear can be enlarged. Secondly, using the relation < A eliminates 
the need to calculate boundaries which will ultimately never be used to identify subsets 
over which a particular action is optimal. 

B. Sondik's Discounted, Infinite Horizon Algorithm 

Sondik [66] developed a Howard-like policy iteration algorithm to compute E- 
optimal policies for the infinite horizon POMDP. Finitely-transient (f.t.) policies play a 
fundamental role in the algorithm. In general terms a policy is f.t. if after a finite 
number of transitions the resulting state is not one at which the policy is discontinu- 
ous, independent of both the current state and the sequences of messages observed. 
The significance of f.t. policies is that the infinite horizon discounted value function 
associated with such a policy is piecewise-linear and the optimal infinite horizon policy 
can be computed with the one-pass algorithm in a finite number of iterations. 
Therefore, as in the one-pass algorithm, piecewise-linearity of the value function 
permits the computation of both the optimal value function and optimal policy. 

Unfortunately, not all stationary policies are f.t. Sondik [66] defined an approxima- 
tion so that all stationary policies are (almost) f. t. The result is an approximate value 
function that is piecewise-linear. 

The Sondik algorithm is a policy iteration algorithm which uses the one-pass 
algorithm in the value-determination step. 
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C. Platzman's Algorithm for Computing Suboptimal Infinite Horizon Policies 

Platzman [45] developed an algorithm for computing approximately optimal policies 
for infinite horizon POMDP's. His work was motivated by the following consider- 
ations. In Sondik's one-pass algorithm, the number of elements in AZ, explodes as n 
tends to infinity. Of course, when a policy is finitely-transient, the number of elements 
in An is finite for all n. However, since finite transience may be difficult to verify in 
practice, Platzman exploited an idea attributed to Drake [16] to insure finiteness of A, 
for all n. The decision maker is restricted to consideration of only a finite number of 
the most recent observations and actions when choosing an action. The notion that 
so-called finite memory policies may be adequate in many decision making contexts is 
a prime motivation in Platzman's algorithm. A finite-memory, randomized strategy is 
selected which indicates the action to take and specifies the next memory state as a 
function of the current memory state. Thus the decision maker is modeled as a 
probabilistic automaton, or equivalently, another POMDP. Selecting the optimal 
strategy amounts to solving a finite-dimensional nonlinear program. Performance 
bounds are given which indicate how close the current solution is to the global 
optimum. 

D. Other Computational Procedures 

Satia and Lave [56] developed an implicit enumeration algorithm for computing 
e-optimal solutions to the finite horizon POMDP in a finite number of iterations. They 
also briefly discussed using the control-limit structure of the optimal policy in the 
Girshick-Rubin machine replacement problem. They report a computation time of 110 
seconds required to determine the control-limit for a two state, two action problem, 
which would seem to indicate that the algorithm is not very efficient. 

Wang [74], [75] developed a special purpose computational procedure for determin- 
ing optimal policies for certain finite-state machine replacement problems. The models 
he considered allow for only two actions (do nothing, replace); inspection is not 
allowed. The procedure described appears to be quite efficient for solving these special 
problems with more than two unobservable states. 

Buckman and Miller [13] presented an algorithm for solving Kaplan's [31] optimal 
investigation problem discussed in ?4. They formulated the problem as a regenerative 
stopping problem [11] and exploited structural properties to improve the computation 
of the optimal policy. Miller [36] used similar techniques to compute solutions to the 
Rosenfield [50], [51]-type maintenance model discussed in ?4. 

Sawaki [57] and Sawaki and Ichikawa [58] pointed out the rather obvious fact that 
the optimal infinite horizon discounted POMDP value function can be approximated 
arbitrarily closely by a (sufficiently large) finite horizon POMDP which is piecewise- 
linear and admits piecewise-constant optimal policies. The practical significance of 
their results for efficiently computing optimal policies is dubious since the number of 
linear segments can very quickly exceed the storage capacity of any existing com- 
puter. 1 

'The author would like to thank Loren K. Platzman for his many helpful comments on an earlier version 
of this paper and for suggesting some of the applications and references. 
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