Probability and Statistics for Final Year Engineering Students

By Yoni Nazarathy, Last Updated: May 8, 2011.

Home Work Project #1

Due date: Tuesday May 24

Hand in instructions: Please hand in a stapled hard-copy no later than the due date. Your hand in may be in a combination of handwriting and computer output. Make sure all your graphs are clear, well-scaled, and properly labeled. A portion of the grade will be based on the clarity of the presentation.

1) Normal approximation to the binomial distribution.

Let $B_1, B_2, ...$ be a sequence of binomial random variables with B_n having a number of trials parameter equal to n and success probability parameter p (the same value for all random variables in the sequence). Let μ_n be the sequence of means, $E[B_n] = \mu_n$ and let σ_n^2 be the sequence of variances, $Var(B_n) = \sigma_n^2$. Denote $\tilde{B}_n = \frac{B_n - \mu_n}{\sigma_n}$.

- a. For $p = \frac{1}{3}$ and $p = \frac{1}{2}$, plot the sequence of PDF's of \tilde{B}_n for n=1,2,3,4,5,10,20,30,40,50,100.
- b. Let $q_n = P(B_n \ge \mu_n + 2 \sigma_n)$. For p = 1/3 and p = 1/2, calculate q_n for n=1,...,100, put the results in a table.
- c. Use a normal (CLT) approximation to approximate the results of (b). Put the results in a table, showing the errors.

2) Analytical investigation of the exponential distribution.

X is an exponential random variable with parameter $\lambda > 0$ if the density is $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$ and 0 elsewhere.

- a. Find the CDF of X and show your calculation.
- b. Calculate the mean of X.
- c. Calculate the variance of X.
- d. Let $M_k = E[X^k]$. (This is called the k'th moment of X). What is M_0 ? Find a recursive formula for M_k in terms of M_{k-1} .

3) Properties of variance estimators.

Let $X_1, ..., X_n$ be a sequence of independent uniform [0,1] random variables.

- a. Calculate $\sigma^2 = Var(X_i)$.
- b. Estimate σ^2 using the sample variance. Plot your estimate as an increasing function of the sample size, n.
- c. Fix n=5. Use simulation to plot the distribution of the sample variance. What is the mean of this distribution?
- d. Let $\tilde{S}^2 = \frac{\sum_{i=1}^{n} (X_i 1/2)^2}{n}$. Is this an unbiased estimator of the variance? Prove your result. Show your result by means of simulation (use n =5).

4) The Gamma distribution.

X is a Gamma random variable with parameters $\lambda>0$ and lpha>0, if the density is

 $f(x) = C x^{\alpha-1} e^{-\lambda x}$ for $x \ge 0$ and some C > 0.

- a. Find an expression for the normalizing constant *C*. You may use the "gamma function" (Google it). Make sure you define the gamma function in your result.
- b. Plot gamma densities for different parameter values.
- c. Is the exponential distribution a special case?
- d. Find the mean and variance of the gamma distribution show your calculations.
- e. Assume now that $X_1, ..., X_n$ is a random sample from a gamma distribution with unknown parameters λ and α . One way to estimate the parameters is the **method of moments**. In this method, you equate the sample mean and sample variance to the mean and variance expressions and solve for λ and α . Write the equations for the method of moments and then write the resulting estimators (functions of the random sample), $\hat{\lambda}$ and $\hat{\alpha}$.
- f. Use simulation to check if the estimators in (d) are biased/asymptotically unbiased show your results for three arbitrary pairs of values of the parameters. Note: We have not discussed how to generate Gamma random variables – you can look this up or read the help of the mathematical package you are using.

Good Luck.