# Probability and Statistics for Final Year Engineering Students 

By Yoni Nazarathy, Last Updated: May 26, 2011.

## Home Work Project \#2

Due date: Monday June 13, 9:00 PM.
Please hand in in Yoni's mail box on the 7'th Floor of EN.
Hand in instructions: Please hand in a stapled hard-copy no later than the due date. Your hand in may be in a combination of handwriting and computer output. Make sure all your graphs are clear, well-scaled, and properly labeled. A portion of the grade will be based on the clarity of the presentation. Non-original work will not be graded. Hand in, in groups of one or two.

1) Simple Stochastic Processes

Let $X_{1}, X_{2}, \ldots$ be an infinite sequence of independent random variables, each having the same probability distribution with mean $\mu$ and variance $\sigma^{2}$. Let,

$$
Y_{n}=\left\{\begin{array}{cc}
\sum_{i=1}^{n} X_{i} & n=1,2, \ldots \\
0 & n=0
\end{array}\right.
$$

A. What is the:
i. Mean function, $m(n)=E\left[Y_{n}\right]$.
ii. $\quad$ Variance function, $V(n)=\operatorname{Var}\left(Y_{n}\right)$.
iii. $\operatorname{Cov}\left(Y_{k}, Y_{l}\right)$.
B. Let $X_{i} \sim \operatorname{Bin}(1, p)$.
i. Simulate a few illustrative trajectories of the process (for some arbitrary value of $p$ that you select) and for $n=0, \ldots, 100$.
ii. Simulate many trajectories to verify your result for Aiii above (by estimating the covariance).
iii. Calculate: $P\left(X_{30}=5, X_{40}=7\right)$ for the arbitrary value of p that you select. Check that your result is correct by simulation.
C. Let $X_{i} \sim \operatorname{Uniform}(0,2)$. Consider the stochastic process, $\tilde{Y}_{n}=\frac{Y_{n}-m(n)}{\sqrt{V(n)}}$.
i. Simulate a trajectory of $\tilde{Y}_{n}$ for $\mathrm{n}=1, \ldots, 30$.
ii. Does $\tilde{Y}_{n}$ converge to a limiting distribution? What is this distribution? Use many simulations to show the distributions of $\tilde{Y}_{n}$ for $n=1,2,3,4,5,10,20,30$.
2) The multi-dimensional normal distribution.
A. Write the density function of the two dimensional normal distribution.
B. Show that the parameter $\rho$ is indeed the correlation coefficient (calculate covariance, variance etc...).
C. Show that the two dimensional case is a special case of the $n$ dimensional case (you will need to invert the $2 \times 2$ covariance matrix etc..).
D. One (popular) way to generate simultaneously a pair of independent Normal $(0,1)$ random variables is to select a uniform angle in the range of $[0,2 \pi]$ and to choose an independent radius according to the so-called Rayleigh distribution (look this distribution up on the web). This yields a polar representation of a coordinate, which when converted to Cartesian coordinates is distribution as two independent standard normal.
Generating a Rayleigh distributed random variable is easy by means of a transformation of a uniform (look it up). Use this method to generate a million random pairs and construct their 3 dimensional histogram, comparing the resulting shape to the two dimensional normal.

Good Luck.

