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Lecture 3:
The Basics of Statistical Inference:

Point Estimation, Confidence Intervals and Hypothesis Testing

Point Estimation:

The idea of “point estimation” is to find a statistic (a function of the random sample) which can serve as

a “good” estimator for some population parameter. Examples are X estimating the population mean, 52
2?:1“

estimating the population variance and p = estimating P(I; = 1). In these cases, “design” of the

statistic/estimator is sensible and simple, yet there are other more advanced cases in which design of a
“good” estimator is not immediately trivial.

Much of the mathematical theory of statistical inference deals with properties of estimators. We only
briefly touch upon this subject here.

Let @ represent some estimator (statistic) for some parameter of the population denoted by 6. (E.g.
0 = S%2 and 6 = a2, the variance of elements of the population). Remember that 8 is a function of the

sample of size n, so we sometimes denote 9n. Here are three types of properties which are of interest:

e We say  is unbiased if E[§] = 6.

e We say 8 is asymptotically unbiased if lim,,_, E[@n] = 6. Note that any unbiased estimator is
asymptotically unbiased.

e We say f is consistent if lim,,_,., ,, = 6. Note: In this course we really didn’t define a limit of
random variables, yet in case of an unbiased estimator it is consistent if lim,,_, o, Var(@n) =0.

In tutorial 2 we have shown that X and p are unbiased and consistent estimators.
Here is the calculation for p again (denote P(I; = 1) = p):

Unbiased:
N il 1 1 1 1
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Consistent:
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Var(p) = Var (M=)=2var (S, 1) = 5%, Var(l)=— Sk, p(1 - p) = np(1 — p) = 242,
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Thus: lim,,_,, Var(p,) = 0.



We shall now investigate the estimator S? to see if it is unbiased (this will explain why thereisn — 1 in
the denominator). First lets present the “working formula” for S?:
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= Var(X) — (E[X2] — E[X]?) = Var(X) — = Var(X)(1 - 3)= (”n;”Var(X).

n

So, E[S?] = Var(X).

Note that if we use iZ?:l(Xi — X)? as estimator for the variance then it is biased yet asymptotically unbiased:
n

E %;(Xi - X)Z] _r-D Var(X).

n




Percentiles (used in confidence intervals and hypothesis testing):

Denote by z, the x'th percentile (also called quantile) of the normal distribution. This can be written in
several ways:

P(Z<z)=x
or
_Z;\/%e_gdt = x,
or,
¢(z) = x,
or,
Zy = ¢7H(X).

You can “read-off” z, from the normal distribution table. Here are a few typically used values:

Zgg = 1.645
Z_975 = 196
Z 995 = 2.576

Z 9995 = 3.291.



Confidence Intervals:

For the rest of this lecture we will concentrate on the estimation of a proportion. Our statistic is

A Li=1"10 111

D= and we are interested in estimating p (the population proportion).

We can use the Binomial distribution to get the exact distribution of p, yet we shall use the central limit

—\2
M) ) distribution.

theorem to approximate this distribution by a Normal( p, ( N
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\/p(l-p)/
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Denote now, Z = . The random variable Z is approximately a standard Normal random

variable.

III

Let us pick now a “small” a. Say &« = 0.01 and go back to the standard normal random variable Z, we

have:
P(Za/z < Z < Zl—a/Z) =1- .
Note also that since the normal distribution is symmetric about 0, z,, = —2z;_,, so:

P(_Zl_a/z <Z< Zl—a/Z) =1-a.

We can now pluginZ = ——
plug J—

(1p/

P( Z1- a/z—m/ <z- a/Z)—l—O{

And rearrange the inequality to obtain

P<ﬁ_zl_%\/p(1—p) . \/p(l—p))zl_a
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Note that the above equation is only approximately true (we have used the CLT to assume a standard
normal distribution for Z). We now make a second approximation: we replace the p’s in the right and
left hand side of the inequality by their estimators p, to obtain:

P(ﬁ—zl_%—ﬁ(l_ﬁ) <p+ —“ﬁ(l_ﬁ)>=1—a.

<Sp<p+z
i PP

The above is called a confidence interval and can be written as:



¥pU-P)

NG with probability 1 — a.

p isin the rangep + Zl_%

The value 1-a indicates the confidence level that we have with respect to the fact that p is in the range

VP(1-p)

ptz _«a - That is, we know that there is (approximately) a 1-a chance that this is indeed the
2

“correct range”.
Note: The approximation is due to the CLT and due to the fact we replaced p with p in the inequality.

Example: In the robotic arm case assume that we sample n=100 suction pick-up attempts and get
Y= 1; = 67. Our estimate for the success probability is 0.67. If we choose @ = 0.05, thus having a
confidence level of 0.95 we have a confidence interval:

0.67 + 1.96Y2070-067 1 4 67 + 0.092.
N

We can thus say with a 95% confidence that the suction success proportion is somewhere in the range

[0.578, 0.762]. Note that there still remains a 5% chance that we were “off the mark” and the actual
proportion is outside of this range.

Note: The concept of confidence intervals is applied in all kinds of estimation problems (not just the
sample proportion). We do not cover further details of this in this course, yet note that the concepts are
similar and you should be able to understand how to use “confidence interval formulas” having
understood the concepts outlined here. For illustration we present the following table scanned from
page 439 of [LeGar08] (this is not part of the material):

Summary of confidence intervals for Gaussian and non-Gaussian random variables.

Case Confidence Interval

Gaussian random variable, o> known [X,‘ — 2ap /NI, Xy + Zapor] '\a"}!]
Non-Gaussian random variable, n large, o known [X 'y~ Zapo /NN, X, + Zapof v"n]
Gaussian random variable, o> unknown [')?,, = tapn10n/ V0, X, + ;“..3_“_1f},,,f\f’(;5]
Non-Gaussian random variable, o unknown, batch means [Y,, — b1 V. Xy F Lz n1 0 V’ﬂ]

Gaussian random variable, 1 unknown |:

(n—1)6% (n— l]f},‘::|

2 r 2
Xazn-1  X1-ai2,n-1

Note that in the above table, t, and y2 represent percentiles from “student-t” and “chi-squared”
distributions. These distributions are related to the normal distribution and often appear in basic
statistical inference. We do not discuss these further.

The following is useful: http://demonstrations.wolfram.com/ConfidencelntervalsForAMean/




Sample Size Planning:

The confidence interval for the proportion (p + z,_« ) shows the relation between sample size,

VP(1-P)
2 ‘/ﬁ

confidence level and the width of the confidence interval. As the confidence level increases (a
decreases), z, _a increases and thus the confidence interval becomes wider. As the sample size
2

increases, the confidence interval shortens.

Note that we do not know the term p(1 — p), until samples have been taken but also note that,

R R 1
pPA—-P) =+
(show this). We now denote ¢ = z,_« V\};. Here we were “conservative” by using the upper bound on
2
H(1 — P). Solving for £ we have:
2
(52)
n* = |~—2%| (these brackets denote “rounding up”).

42

We can interpret the above as: If P is used to estimate p, we can be at least 1-a confident that the
error be less than ¢ if we choose a sample size n*.

Example: Assume that we are using Monte-Carlo simulations to simulate the structural properties of our
robotic arm after 10 years of operation. A Monte-Carlo simulation of the robotic arm needs to run for
several hours on a super-computer, generating a “0” or a “1” indicating if the robotic arm’s metal
structure is “still usable” or “requires some replacement” after 10 years. We want to see what
proportion of robotic arms will need to be replaced after 10 years. Assume we would like to be accurate
up to a level of € = 0.1 with a confidence level of 1-a = 99%. How many simulation runs do we need?

Answer, we have z 495 = 2.576, plugging in the above formula we have

(2.576)?
40.12

n* = [ ] = [64.4] = 65.



Hypothesis Testing Basics:

One of the purposes of statistical analysis of data is to verify scientific and/or engineering hypothesis.
Here are some examples:

e Hypothesis: The mean weight of items in the warehouse is greater than 20Kg.

e Hypothesis: The proportion of successful robotic-arm pick-ups using suction is bigger than that
using grabbing.

e Hypothesis: The variance of the grades of students of group A is smaller than that of group B.

e Hypothesis: The distribution of measurement errors is uniform.

e Hypothesis: Times between arrivals of customers to a super-market are independent.

The process of hypothesis testing is a statistical procedure for using data (from the sample) in-order to
check the validity of hypothesis. Our purpose here is to briefly the basic concepts only.

The ingredients of a hypothesis testing procedure are the following:

e The parameter space 0 is the set of values which the parameter(s) under investigation can take.

e The parameter space is partitioned into the Null Hypothesis (often denoted H;) and the
Alternative Hypothesis (often denoted H,). It is often the case that H, denotes values of the
parameter which are known prior to “some new treatment” and H; are values of the parameter
which are scientifically assumed and are now to be demonstrated by means of the hypothesis
testing procedure:

Example: Assume that it is known that the chance of a heart-attack (say during the ages of 50-
70) is 0.23. Now a medical company wants to show that some medicine reduces the chance for
heart attack, then ® = [0,1] H, = [0.23,1] and H; = [0,0.23).

e Atest statistic is a random value calculated from the sample.

e Adecision rule is a rule for deciding if to select H, or H; based on the test statistic. l.e. itis a
rule for choosing a random outcome (random since the statistic is a function of the random
sample). Selecting H, is often called rejecting Hyy. This is often viewed as the “desired effect” of
the Hypothesis testing procedure. Selecting H, is often denoted as not rejecting H (or
sometimes failing to reject). The decision rule is typically in the form of a critical value or critical
region: When the test statistic is great/smaller than the critical value one rejects H, otherwise,
one does not reject H.

e The probability of type-I error, denoted a is the probability of rejecting Hy when H,, actually
holds (false-positive). This is also sometimes called the significance level of the test. This
probability is typically set to one of the values 0.1, 0.05, 0.01, 0.001.

Example: Continuing the anti-heart-attack drug example from above, it is most sensible to use
the sample proportion as the test statistic. The decision rule may be something of the sort:
Reject Hy if p < 0.19 otherwise do not reject. Now the type-| error would be the probability of



getting p < 0.19 even when the drug has no-effect (i.e. p=0.23). In clinical testing a very small
type-| error is often used (e.g. 10"-4) why?

e The probability of type-Il error, denoted £ is the probability of not rejecting Hy when H;
actually holds (false negative). The complement 1- § is called the power of the test. One would
like to have the power as close to 1 as possible, but tests are typically done by selecting a
significance level (@), leaving the power to be a function of the sample size (an increasing
function).

The best way to understand the mathematics of hypothesis testing is by looking at a simple hypothesis
test. A test is called simple if the number of elements in the parameter space, 0, is 2. Such cases
situations are often less realistic, but are useful for both understanding the basics of hypothesis testing
and for developing further mathematical theory (not done here).

Example (Simple hypothesis — good for theory — not so practical): Assume that certain types of screws
are manufactured by two manufacturers. The screws made by both manufacturers are indistinguishable
in appearance, weight and other external physical properties. Nevertheless, screws made by
manufacturer 0 have a chance of py = 0.5 of breaking under a certain load test while screws made by
manufacturer 1 have a chance p; = 0.3 of breaking. We are given a container with tens of thousands of
screws all made by a single manufacturer (we don’t know if 0 or 1). We set out to determine if the
container is from manufacturer 0 or 1 by estimating the proportion of screws breaking under the load.
We sample n=40 screws, perform the load test on each screw and obtain p.

Assume that we set this as an hypothesis test with Hy = py and H; = p;. Assume further that we make
the following decision rule: If p < 0.38 reject Hy, otherwise do not reject Hy. Using the CLT to
approximate the binomial distribution, this test can be illustrated as follows:

H: /N
Nomal (0103 p0(1-p0) / \ N
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/
/ \\ Ho:Normal (p0=05,
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Notice the tradeoff between @ and . We can now calculate a and 8 and the power of the test. What
happens when we increase the sample size n?

Notice that in this setting the null hypothesis and alternative hypothesis appear to be treated in the
same manner: the location of the critical value determines our probabilities for false-positive and false-



negative. As opposed to that, we can take the following approach: Our manufacturer is typically
manufacturer 0, so that is why we have this is as the null hypothesis. We now wish to set @ = 0.05. The
critical value and the power of the test will follow as a result. What would be the critical value? What is
the power of the test?

Hypothesis Testing For Proportions:

Moving onto non-simple hypothesis we now present the test for the population proportion. Here is a
motivating example: Consider the robotic arm example (we are beta-testing a new robotic arm which
picks items up). Forillustration, assume that the market already has a robotic arm in use (an older
generation) which is known to succeed in picking up items on the first attempt with probability p=0.55.
We believe that our robotic arm is better and can get 0.55 < p.

We formulate this as an hypothesis test (called the one-sided hypothesis test for a proportion):
Hy:p < 0.55
Hi:p > 0.55

p—0.55

\/p(l—p)/

n

The test statistic is as in the confidence interval Z = . Note that if Hy is true, Z is a standard

normal random variable (approximately due to the CLT). The decision rule is thus to reject Hy if Z is
“big”. How Big? We choose z,_, as a critical value and reject H, if Z>z;_, . This means that the
significance level (type | error probability) of the test is «.

Note that an alternative one-sided test is of the form:
Hy:p = 0.55
Hi:p < 0.55
In this case the critical value is z, and we would reject H, if Z<z,.
There is also the two-sided hypothesis test for a proportion. In this case:
Hy:p = 0.55
Hy:p # 0.55
Now the rejection region is when Z is “far from 0” in either direction. Reject if if Z>z;_,/, or Z<zy, .

An alternative way of stating the result of an hypothesis test is by means of a p-value. The p-value is the
smallest confidence level for which the test is not rejected.

The following demonstration may be helpful:
http://demonstrations.wolfram.com/HypothesisTestsAboutAPopulationMean/
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