Probability and Statistics

for Final Year Engineering Students
By Yoni Nazarathy, Last Updated: May 1, 2011.

Lecture 4 — part B: Several Random Variables

Note Lecture 4 is divided into Part A: Joint Distributions, Covariance, Correlation
and Part B: Multinomial Distribution, Conditional Distributions, Joint Gaussian Distribution

Brief review of part A:
In part A we saw that the joint distribution of X and Y is
p(x,y) = P(X = x,Y = y) for discrete RVS, or
f(x,y)dxdy =~ P(X € [x,x +dx],Y € [y,y + dy]) for continuous RVs (f is called the density).

We also defined the covariance:
Cov(X,Y) = E[(X — E[X])(Y — E[Y])] = --- = E[XY] — E[X]E[Y], noted that,

E[XY] = E[X]E[Y] (when independent)
And that,
Var(X+Y) =Var(X) + Var(Y) + 2Cov(X,Y).
We also defined the correlation coefficient:
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Marginal distributions:

If we know the joint distribution we can get the distribution of one of the coordinates by summing
(integrating) over the other. This is called the marginal distribution.

p(x) =X, p(x,y), p(y) = Xxp(x, ).

fe) =[fl,ydy, fy) = [f(x,y)dx
The Multinomial Distribution:

Recall first the binomial distribution. X~Bin(n,p) let Y=n-X, what is the joint distribution of X and Y?

Answer: p(x,y) = n—!px(l —p)Yfor0<x,y andx+y =n.
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This is a special case of the multinomial distribution where there are two outcomes for each experiment,
with probabilitiesp; = pandp, =1 —p.

This can be generalized to a case of M possible outcomes in a set of n indepdendent experiments.
Denote, p; + -+ py = 1. (Binomial is the case of M=2). Then the probability of k, events of type 1
(each occurring with probability p,), k, events of type 2, etc... is given by,
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Note this is the joint distribution of M random variables.
What do you think is the marginal distribution?
Conditional distributions:

The conditional distribution of X given Y gives the conditional probabilities, P(X=x | Y=y) (in the case of
discrete RVs). This is the probability of the random variable X getting the value x if we know that Y=y.

We have,
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Similarly,
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For continuous random variables:
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Example — a simple router:

Example needs to be filled in.



The Bivariate Gaussian Distribution:
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The means are: pq, s

The variances are 02, g2.
The parameter is p is the correlation coefficient (this can be shown).

The PDF is centered around (i4, 4») and is constant for values where
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The Marginal PDFs are simply those of Normal(y;, al-z) i=1,2.

The conditional PDF is as follows:
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So this shows that if we know that X, = x, then X;~Normal(u, + pz—: (xy —up), (1=pHod).



