
1 

 

Probability and Statistics  

for Final Year Engineering Students 
By Yoni Nazarathy, Last Updated: May 24, 2011. 

 

Lecture 6p: 

Spectral Density, Passing Random Processes through LTI Systems, Filtering 

Terms and concepts from previous lecture: 

The mean function: ���� = �[�	]. 

The variance function: ���� = ��
��	�. 

The autocovariance: ����, ��� = �����	� , �	�� 

The Autocorrelation function: ����, ��� = ���	��	�� = ��	����	��
�	���� = 	����, ���. 
A random process X(t) is a Gaussian random process if the joint distribution of �	� , … , �	"  for 

for all k and ��, … , �# is jointly Gaussian.  This is the density of a joint Gaussian distribution (with 

mean vector �$ and covariance matrix %$�: 

&�'� = &�(�, … , ()� = �
��*�+/�-./	�01��/� exp{− �

� �' − �$�′%$8��' − �$�	}. 

Since a joint Gaussian distribution is fully characterized by the mean and covariance matrix, we 

have that the distribution of Gaussian random process is fully determined by the functions m(t) 

and ����, ���. 
A random process is stationary if the distribution of �	� , … , �	" is the same as �	�:;, … , �	":; is 

the same for all <.   

Wide-Sense Stationary Random Processes: 

A random process is wide-sense stationary (WSS) if ���� = � and ����, ��� only depends on 

the difference of the times �� and ��, i.e. ����, ��� = ��< = �� − ���. Or alternatively 

����, ��� = ��< = �� − ���. 

Any stationary random process is WSS (the reverse does not always hold). 

Any WSS Gaussian random process is stationary. 
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From now on, we will concentrate on WSS Gaussian processes (typically with zero mean).  The 

distribution of such processes is fully described by their Autocorrelation function ��<�. 
Properties of the autocorrelation function: 

• ��0� = �[�	�] for all t.   

• ��<� is an even function:  ��<� = ��−<� 

• ��<� gets a maximum at < = 0. 

• >�|��� + 	<� − ����| > 	B� ≤ 2 E�F�8E�;�
G� . 

• If ��0� = ��H� then R() is periodic with period d. 

Rough illustration of estimation of the correlation of a telegraph type process: 

NN=10000; 
p1=0.01;p2=0.01; 
next[x_]:=If[x�1,If[Random[]≤p1,-1,1],If[Random[]≤p2,1,-1]] 
rel1=NestList[next,1,NN]; 
corrSample[k_]:=Mean[Table[rel1[[i]] rel1[[i+k]],{i,1,NN-k}]//N] 
corrEst1=Table[{k,corrSample[k]},{k,0,40}]; 
p1=0.05;p2=0.05; 
next[x_]:=If[x�1,If[Random[]≤p1,-1,1],If[Random[]≤p2,1,-1]] 
rel2=NestList[next,1,NN]; 
corrSample[k_]:=Mean[Table[rel2[[i]] rel2[[i+k]],{i,1,NN-k}]//N] 
corrEst2=Table[{k,corrSample[k]},{k,0,40}]; 
p1=0.1;p2=0.1; 
next[x_]:=If[x�1,If[Random[]≤p1,-1,1],If[Random[]≤p2,1,-1]] 
rel3=NestList[next,1,NN]; 
corrSample[k_]:=Mean[Table[rel3[[i]] rel3[[i+k]],{i,1,NN-k}]//N] 
corrEst3=Table[{k,corrSample[k]},{k,0,40}]; 
ListPlot[{corrEst1,corrEst2,corrEst3},PlotRange→All,AxesOrigin→{0,0}] 
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The power spectral density: 

The power spectral density is the Fourier transform of the autocorrelation function. 

I�&� = J ��<��8K�*L;H<
M

8M
 

Since the autocorrelation function is an even function: 

I�&� = N ��<�����	2O&< − P	���	2O&<�H< = N ��<����	2O&<	H<M
8M

M
8M . 

So I�&� is a real valued even function. 

Given a random trajectory of the process over a finite interval [0,T] we can compute the Fourier 

transform of this trajectory: 

(Q�&� = J ����
R

F
�8K�*L	H� 

We can then approximate the “power density” as a function of frequency by, 

SQR�&� = �
R |(Q(&)|� = �

R (Q(&)(Q∗(&) = �
R UN �(�)R

F �8K�*L	H�V UN �(�)R
F �K�*L	H�V. 

(This is what a spectrum analyzer does), 

It then turns out (by the (Einstein)-Wiener-Khinchin theorem) that, 

I(&) = limR→M �[SQR(&)]. 

Given the power spectral density we can get the autocorrelation function by the inverse Fourier 

transform: 

�(<) = J I(&)�K�*L;H&M
8M

. 
Note that the average power of the process is, 

�[�(�)�] = �(0) = N I(&)H&8M
8M . 
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Random Processes Passing Through Linear Time Invariant (LTI) Systems: 

A Linear Time Invariant (LTI) system transforms an input signal �	 into an output signal [	 in a 

way such that the output of a linear combination of signals is a linear combination of the 

outputs and the output of a time shifted signal is the time shifted output. Many physical and 

signal processing systems can be modeled and implemented as LTI. 

A useful property of LTI systems is that the impulse response \��� fully describes the system in 

that the output resulting from any input signal is the convolution of the input with the impulse 

response. 

[	 = J \�� − ]��^H]
M

8M
 

We now consider random signals passing through LTI systems. 

The mean and autocorrelation of the output are as follows: 

�_��� = N \�� − ]��$�]�H]M
8M . 

�_�<� = N \�]�`N \�����< − ] + ��H�M
8M aH]M

8M . 

The transfer function of an LTI is, 

b�&� = N \�<��8K�*L;H<M
8M . 

KEY Result: for WSS processes:   										I_�&� = |b�&�|�I$�&�   . 
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The above result shows us how we can use linear systems to filter the power spectral density of 

random signals:  Pass the signal through a linear system with a desired transfer function. 

Example: White noise through a low pass RC filter. 

A WSS process is called white noise if ��<� = �c�<�.  Alternatively I�&� = �. 
Consider an RC circuit. Suppose the voltage source is a white noise process and the output is 

the capacitor voltage. We find the power spectral density of the output process. 

The transfer function of this system is b�&� = �
�:K�*Ed	L. 

So, 										I_�&� = |b(&)|�I$(&)   =
�

�:K�*Ed	L 	U �
�:K�*LEdV∗

c =
�

�:(�*LEd)� �. 

Example: 

White noise is applied to a filter with impulse response, ℎ(�) = e[F,R](�). 

b(&) = N ℎ(�)�8K�*L	H� = �8fgh�ijk
K�*L

M
8M = �8K*RLl mno	(*	RL)

	*	RL . 

So, 										I_(&) = |b(&)|�I$(&) = l� Umno	(*	RL)
	*	RL V� �. 

Design of a matched filter: 

Assume we may be receiving a known signal �(�) in and have additive noise (not necessarily 

white)  �	.  Examples are in detection of communication messages and in radars.  

In case there is in fact a known signal, we receive �(�) + �	.  We can filter this input through an 

LTI to obtain  �F(�) + �	. 
An important design question is in choosing the LTI that will maximize the signal to noise ratio 

at time �F: 

Ip� = qr(	r)�
s[_tr�]=

qr(	r)�
uv , 

Where >_ = �_(0). 
It turns out that the best filter to use is, 

b(&) = �
w1(L) �(&)∗�8K�*L	r . 

Observe that the inverse Fourier transform of �(&)∗�8K�*L	r   is �(�F − �). 
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So in case the noise is white the best filter to use a system with impulse response ���F − ��. 

Derivation of the matched filter: 

>_ = J |b(&)|�I$(&)M
8M

H& 

�F(�F) = J b(&)�(&)�K�*L	r
M

8M
H& 

So, 

�F(�F) = J b(&)xI$(&) �(&)�K�*L	r

xI$(&)
M

8M
H& = J b(&)xI$(&) y�(&)∗�8K�*L	r

xI$(&) y
∗M

8M
H& 

Now we use this version of the Cauchy-Schwarz inequality: 

zN {(|)ℎ(|)∗H|M
8M z� ≤ N |{(|)|�H| ∙ N |ℎ(|)|�H|M

8M
M

8M . 

and equality holds only if h() is a multiple of g(). 

So, 

|�F(�F)|� ≤ N |b(&)|�I$(&)M
8M H& ∙ N |~(L)|�

w1(L)
M

8M H& = >_	�. 

So, 

Ip� = |�F(�F)|�
>_ ≤ >_	�

>_ = �. 

This upper bound is attained if the inequality is an equality which occurs when b(&)xI$(&) is a 

multiple of 
~(L)∗fgh�ijtr

xw1(L) : 
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b�&�xI$�&� = � ��&�∗�8K�*L	r

xI$�&� . 

This, after re-organizing (and choosing � = 1� gives the desired frequency response of the 

system: 

b�&� = �
w1�L� ��&�∗�8K�*L	r . 

 

 


