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Lecture 6p:
Spectral Density, Passing Random Processes through LTI Systems, Filtering

Terms and concepts from previous lecture:

The mean function: m(t) = E[X,].

The variance function: V(t) = Var(X;).

The autocovariance: C(ty,t;) = Cov (X, , X¢,)

The Autocorrelation function: R(t,,t,) = E[thth] = in case zero mean = C(ty,t,).

A random process X(t) is a Gaussian random process if the joint distribution of X, , ..., X;, for

for all k and t4, ..., ty is jointly Gaussian. This is the density of a joint Gaussian distribution (with
mean vector my and covariance matrix Ky):
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Since a joint Gaussian distribution is fully characterized by the mean and covariance matrix, we
have that the distribution of Gaussian random process is fully determined by the functions m(t)
and C(ty, t,).

A random process is stationary if the distribution of X , ..., X;, is the same as X, 4, ..., Xy, 41 IS
the same for all 7.

Wide-Sense Stationary Random Processes:

A random process is wide-sense stationary (WSS) if m(t) = m and C(t,, t,) only depends on
the difference of the times t, and ty, i.e. C(t,t;) = C(t = t, — t;). Or alternatively
R(ty,t) =R(T =t — ty).

Any stationary random process is WSS (the reverse does not always hold).

Any WSS Gaussian random process is stationary.



From now on, we will concentrate on WSS Gaussian processes (typically with zero mean). The
distribution of such processes is fully described by their Autocorrelation function R(7).

Properties of the autocorrelation function:

« R(0) = E[X,*]forallt.

e R(7)is an even function: R(t) = R(—71)

* R(7) getsamaximumatt = 0.

« P(X(t+ D) —X(®)] > &) <2280,

e If R(0) = R(d) then R() is periodic with period d.

Rough illustration of estimation of the correlation of a telegraph type process:

NN=10000;

p1=0.01;p2=0.01,

next[x_]:=If[x==1,If[Random[] <p1,-1,1],If[Random[] <p2,1,-1]]
rel1=NestList[next,1,NN];

corrSample[k_]:=Mean[Table[rel1[[i]] rel1[[i+k]],{i,1,NN-k}]//N]
corrEst1=Tabl €[ { k,corrSample[k]} ,{ k,0,40} |;

p1=0.05;p2=0.05;

next[x_]:=If[x==1,If[Random[] <p1,-1,1],If[Random[] <p2,1,-1]]
rel2=NestList[next,1,NN];

corrSample[k_]:=Mean[Table[rel2[[i]] rel2[[i+k]],{i,1,NN-Kk}]//N]
corrEst2=Tabl €[ { k,corrSample[k]} ,{ k,0,40} |;

p1=0.1;p2=0.1,

next[x_]:=If[x==1,If[Random[] <p1,-1,1],If[Random[] <p2,1,-1]]
rel3=NestList[next,1,NN];

corrSample[k_]:=Mean[Table[rel3[[i]] rel3[[i+k]],{i,1,NN-k}]//N]
corrEst3=Tabl €[ { k,corrSample[k]} ,{ k,0,40} |;

ListPlot[{ corrEst1,corrEst2,corrEst3} ,PlotRange—All , AxesOrigin—{ 0,0} ]
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The power spectral density:

The power spectral density is the Fourier transform of the autocorrelation function.
S(f) = j R(v)e ™ *dr
—00

Since the autocorrelation function is an even function:
S(f) = fjoooR(T)(COS 2nft — j sin 2nfr)dr = f_OOOOR(T)COS 2nfr dr.
So S(f) is a real valued even function.

Given a random trajectory of the process over a finite interval [0,T] we can compute the Fourier
transform of this trajectory:

T
x(f) = f X(t) e~/ tqt
0
We can then approximate the “power density” as a function of frequency by,

Pr(f) = 71RO = 12OF () = 7 (f; X(©) e ¢de) (f; X(0) e/ dt).
(This is what a spectrum analyzer does),
It then turns out (by the (Einstein)-Wiener-Khinchin theorem) that,
S(f) = limp_ E[r(f)].

Given the power spectral density we can get the autocorrelation function by the inverse Fourier
transform:

R(x) = fooS(f)eiZ”def.

— 00

Note that the average power of the process is,

E[X(t)%] = R(0) = [ S(f)df.
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Random Processes Passing Through Linear Time Invariant (LTI) Systems:

A Linear Time Invariant (LTI) system transforms an input signal X; into an output signal Y; in a
way such that the output of a linear combination of signals is a linear combination of the
outputs and the output of a time shifted signal is the time shifted output. Many physical and
signal processing systems can be modeled and implemented as LTI.

A useful property of LTI systems is that the impulse response h(t) fully describes the system in
that the output resulting from any input signal is the convolution of the input with the impulse

response.
Y = J h(t —uw)X,du

We now consider random signals passing through LTI systems.

The mean and autocorrelation of the output are as follows:
my(6) = 7 h(t — wymy (w)du.
Ry(@ = [ h@)([” h(s)R(t — u + s)ds)du.
The transfer function of an LTl is,
H(f) = [ h(r)e"2™/"dr.
KEY Result: for WSS processes: Sy(F) = |H(F)I1?Sx ()
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The above result shows us how we can use linear systems to filter the power spectral density of
random signals: Pass the signal through a linear system with a desired transfer function.

Example: White noise through a low pass RC filter.
A WSS process is called white noise if R(t) = c6(t). Alternatively S(f) = c.

Consider an RC circuit. Suppose the voltage source is a white noise process and the output is
the capacitor voltage. We find the power spectral density of the output process.

1

The transfer function of this system is H(f) = T+iznRC F'

so,  Sy(f) = HIDPSy(f) === (i) o]

= = C.
14+i2nRC f \1+i2mfRC 14+(2mfRC)?
Example:

White noise is applied to a filter with impulse response, h(t) = Ijor(t).

l_e—iZﬂ:fT

— (*® —i2mft — — ,—inTf sin(m Tf)
H(f) = J__h(t)e dt o =€ T—an .

So,  Sy(f) = [H(P)|>Sx(f) = T? (ﬂ)z c

nTf

Design of a matched filter:

Assume we may be receiving a known signal v(t) in and have additive noise (not necessarily
white) X;. Examples are in detection of communication messages and in radars.

In case there is in fact a known signal, we receive v(t) + X,. We can filter this input through an
LTI to obtain vy(t) + X;.

An important design question is in choosing the LTI that will maximize the signal to noise ratio
at time t:

SNR — vO(tO)szO(tO)Z
E[Yz,?] Py '

Where P, = Ry (0).

It turns out that the best filter to use is,

1
Sx(f)

H(f) = ==V (f) e 20,

Observe that the inverse Fourier transform of V(f)*e ™2™/t is v(t, — t).



So in case the noise is white the best filter to use a system with impulse response v(t, — t).

Derivation of the matched filter:

Py = j H(P) 2k (f) df

Do (tg) = f H(PV (e df

So,

* —lZTL’fto

d
VSx(F) 4

127Tft0
vo(to)=j H(f)Sx(f) (\1297 df = f H(f)/Sx(f) ‘ e
- X

Now we use this version of the Cauchy-Schwarz inequality:

0 2 0 ©
|/ o 9(@R(6)ad|” < [ 1g©)I*d6 - [~ |h(6)]*db.
and equality holds only if h() is a multiple of g().

So,

[vo(t)l? < [ IH(DIS (P df - [, D  af = py B

So,

vo(ty)|>? Py B
SNR:I o(to)l KB
Py

This upper bound is attained if the inequality is an equality which occurs when H(f),/Sx(f) is a

f V(f)*e—ianto )
VSx(f)

multiple o



V(f)*e—iZHfto

H(f)Sx(f) =
NSk (f a ’_Sx(f)

This, after re-organizing (and choosing @ = 1) gives the desired frequency response of the

system:

1
Sx(f)

H(f) = ==V (f)'e 2%,



