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Lecture 6s:
Least Squares / Linear Regression

Introduction:

Suppose that we wish to find a relationship between two (perhaps physical) variables, X and Y.
Estimating the correlation coefficient (o (X, Y)) gives us one way to see if these variables are
statistically related. This method is good for cases where we think of both X and Y as being
random and we want to summarize their “dependence” using a single number in the range
[-1,1].

An alternative (and often more popular) method is to use regression analysis. This method
assumes that the values of x are non-random (so we denote them with lower case x) and the
values of Y are random and depend on x in the following way:

Y(x) = By + B1x + € (simple linear regression).

We are thus assuming that there exist constants 3, (intercept) and ; (slope) such that values
of Y follow the linear line B, + [;x yet are subject to some random errors (noise) denoted by &
(which is assumed to have a mean of zero).

We can now use sample data ((x;, y1), ..., (Xn, ¥,)) to find Y (x) or alternatively find 8, and f;,
so that,

Y(x) = Bo+Bix.
Vi = Po + P1x; + &  (simple linear regression).

We will shortly show that a common and useful way to carry out the estimation is using the
following formulas (called the least squares solution):
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Let us begin with an example: In the robotic arm suppose we are trying to implement a new
algorithm which will “selectively give priority to picking up of items that give higher value to the
warehouse”. The idea is that eventually all items are picked up, but items which give “higher
value” are picked up first. To do this, our arm needs a mechanism to identify the value in items.
We are trying to do this solely based on the dimensions of the item, specifically based on the
volume of items (which our computer vision system can estimate with very high precision).

We now collect data in the form ((xq, y1), ..., (Xn, ¥»)) Where x; is the volume of item i and y; is
the value as indicated by the warehouse, given in dollars.

item volume Value
1 12 15
2 13 13
3 16 17
4 19 21
5 21 19
6 25 26
7 30 28
8 31 35
9 31 33
10 35 24

40

35 :

30 y =0.773x +5.0891
R?=0.7355

®
25 ®
20 & value

15 ¢ ——Linear (value)

10




Least Squares Solution:
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S =) are obtained by minimization of the

The estimators B, = y — 1% and B, =
cost: Q(¥,y) = LI, (vi — 9%
This implies minimization of Q = Y, (v; — (B + ﬂlxl))

Simple calculus can be used:
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(It can be shown by use of second derivatives that the above equations indeed define a global
minimum):

The conditions can be written as:
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We denote these as the normal equations.

Their solution are B, = y — 1% and B, = Lz (i~ D 0i-5)
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Is a value between 0 and 1 that represents the proportion of the sum of squares of deviations
of the y values about their mean that can be attributed to a linear relationship between y and x.
(This value also equals the square of the correlation coefficient studied in section 4).



Multiple Least Squares Solutions:

We can assume that the dependent variable y depends on more than one (p) independent
variables. In this case the model becomes.

Vi = Bo + Bixin + BaXiz + -+ +Bpxip + &

For example:
Vi = Bo + Bixix + Baxiz

or,

Yi = Bo + Pixin + Boxin®.

In the first example we assume there is a surface parameterized by (8,, £1, f>) that describes
the dependence of y on the two coordinates x; and x,. In the second example we assume that
there is a parabola which describes the relation between x and y.

In both of these cases the idea of least squares (fully derived above in the simple case)
generalizes, the normal equations are still a set of linear equations but now with p+1
unknowns. These can be computed easily (you would usually use statistical/mathematical
software to do so).

The statistical analysis which we describe now also generalizes to the multiple least squares
case (but we do not discuss this further).



Statistical Assumptions and Results of Linear Regression:
Assumptions:

1. Predictor/independent variable is known (not random).
The mean of y given x is linear.

3. Common variance for the error. (Homoscedasticity as opposed to a model that is
heteroscedastic).

4. Error follows a normal distribution with mean 0 and variance 2.

5. Independence of errors.

Results arising from these assumptions:
The distribution of 8, and ;.
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Where the independent variables, x’s are known (with average x) and,
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So the least squares solution is an unbiased estimator. Since we now know the
“distribution of the statistic” further results can be developed (confidence intervals and

hypothesis tests).

Checking model assumptions:

e Residuals.
0 Constant variance
0 Normal Distribution.
0 Independence.
e Outliers.
0 Some times can be thrown away (from the least squares).
O Robust regression.
e Model Selection in multiple-regression.



