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1 Simple Stochastic Processes

1.1 Mean, Variance and Covariance Derivation

The following sections show the derivation of various parameters of the data set Yn. This data set is defined in
Equation 1

yn =

{ ∑n
i=0 Xi

0

n = 1, 2, . . .

n = 0
(1)

1.1.1 Mean Derivation

m(n) = E [Yn]

m(n) = E

[
n∑
i=1

Xi

]

m(n) = nE [Xi]

m(n) = nµ

1.1.2 Variation Derivation

V (n) = Var (Yn)

V (n) = Var

(
n∑
i=1

Xi

)

Since the variance of sum is the sum of variances for a random variable, this expression can be rewritten as:

V (n) =
n∑
i=1

var (Xi)

V (n) = nσ2

1.1.3 Covariance Derivation

cov(YL, YK) = Cov

 L∑
i=1

Xi,

K∑
j=1

Xj


cov(YL, YK) =

L∑
i=1

K∑
j=1

Cov (Xi, Xj)
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Representing this expression in a matrix it can be shown that across the diagonal we have the covariance of a single
random variable with itself, and outside the diagonal we the covariance of two independent random variables.

Cov (X1, X1) Cov (X1, X2) . . . Cov (X1, XK)
Cov (X2, X1) Cov (X2, X2) . . . Cov (X2, XK)

...
...

. . .
...

Cov (XL, X1) Cov (XL, X2) . . . Cov (XL, XK)


i
↓
L

j → K

Using the basic rules of Covariance, Cov (X, X) = Var (X), and Cov (X, Y ) = 0 (for X and Y being independent
random variables), the matrix can be simplified as follows

Var (X1) 0 . . . 0
0 Var (X2) . . . 0
...

...
. . .

...
0 0 . . . Var

(
XL|K

)


Since Var (X) = σ2 the cov(YK , YL) = Kσ2 given that K < L.

1.2 Covariance Simulation of the Binomial Distribution

1.2.1 Process Simulation for the case of Xi being binomially distributed

To simulate this process, the MATLAB script in Listing 1 was to generate a few trajectories. These trajectories are
shown in Figure 1.

few = 5; %Few being the amount of trajectories plotted
p=0.25, n=100;
%Graph variables defined
colors = [’b’ ’g’ ’r’ ’c’ ’k’];
figure (1), clf(1), axis ([0 100 0 40]), xlabel(’n Trials ’), ylabel(’Trial success ’);
hold on;
for i=1:1: few

Xi = [0 binornd(1,p,[1,n])];
Y=[];
Y=cumsum(Xi);
stairs(Y,sprintf(’%s’,colors(i)));

end
hold off;
title(sprintf(’Number of successes for Probability of %.3f over 0-%i trials ’,p,n));
saveas(gcf ,sprintf(’p=%.3f n=%i.pdf’,p,n));

Listing 1: MATLAB Source Code to plot of several trajectories of the counting process

1.2.2 Estimation of the Covariance of two variables in the sequence Yn through Simulation

To estimate the covariance through simulation, a MATLAB script which utilized 100,000 trials was executed. This
script is shown in Listings 2, this script relies on the sample covariance function defined in Listings 3. The script
returned the value 9.2037 for the values indexed at 50 and 80 in Yn (arbitrarily chosen).

3



0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

n Trials

T
ria

l s
uc

ce
ss

Figure 1: Number of successes for Probability of 0.25 over 0-100 trials

From Section 1.1.3 the analytical expression for Covariance is:

cov(YK , YL) = Kσ2 given that K < L.

For the Bernoulli case is σ2 = p(1−p), substituting this into the expression yields

cov(YK , YL) = Kσ2 = Kp(1−p)

which for K = 49 and L = 80, results in the analytical calculation of 9.1875, this approximately matches the result
from simulation.

1.2.3 Calculation of the Joint Probability of the Expression P (X30 = 5, X40 = 7)

The probability of Sn2 = y2 occurring given that Sn1 = y1 is given by

P (Sn1 = y1, Sn2 = y2) =

(
n2 − n1
y2 − y1

)(
n1
y1

)
py2(1− p)n2−y2

For our chosen probability, that of p = 0.25

P (Y30 = 5, Y40 = 7) =

(
40− 30
7− 5

)(
30
5

)
0.257(1− 0.25)40−7 ≈ 0.0295

Using the MATLAB script in Listings 4, this analytical result was confirmed by simulation which gave the result
P (Y30 = 5, Y40 = 7) ' 0.0296.

1.3 Stochastic Process of a Uniformly Distributed Variable

From Equation 1 we know that yn is a cumulative summation of the randomly distributed variable Xi. To determine
the function in Equation 2, we first analytically determine the mean and variance of y(n).

ỹt(n) =
y(n)−m(n)√

v(n)
(2)
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%Defining variables
p = 0.25, n = 100, trials = 100000;
Z = zeros(trials ,(n+1));
acc = 0;

for i=1:1: trials
Xi = [0 binornd(1,p,[1,n])]; %Inserts N(0)=0
Y=[];
Y=cumsum(Xi); %Returns
if (Y(31)==5 && Y(41)==7)

acc=acc +1;
end
Z(i,:)=Y;

end

%Using cov as Sample Variance
%Cov(Yk , Yl) where k < l
k=49;
l=80;
SampleCov(Z(:,k+1),Z(:,l+1))

%Comparing to Sample Variance
cov(Z(:,k+1),Z(:,l+1))

Listing 2: MATLAB Source Code to determine the covariance of two variables in the counting process

function [covariance] = SampleCov(x,y)
acc =0;
for i = 1:1: size(x,1)

acc=acc +((x(i)-mean(x))*(y(i)-mean(y)));
end
covariance = acc/(size(x,1) -1);

end

Listing 3: MATLAB Source Code to Calculate the Sample Covariance

1.3.1 Mean Calculation for the Random Variable Xi ∼ Uniform(0, 2)

The Probability Density Function (pdf) of a uniform random variable in the range [0,2] is easily defined. It is simply
a rectangular area which covers the range [0,2] with a height of 1

2 , This ensures that the area under the pdf is unity.

f(x) =
1

2
, 0 ≤ x ≤ 2 otherwise 0

The expectation of X is then defined as:

E[X] =

ˆ
x f(x) dx

Substituting in the derived density function:

E[X] =
1

2

ˆ 2

0
x dx =

1

4

[
x2
]2
0

= 1 (3)

5



%Finding P(X_n1 = y1 , X_n2 = y2)
%P(X_n1 = y1, X_n2 = y2) via calculation
%where
n1=30, y1=5, n2=40, y2=7;

P = nchoosek ((n2-n1),(y2 -y1))* nchoosek(n1 ,y1)*p^y2*(1-p)^(n2-y2)

%Defining variables
p=0.25, n=100, trials = 100000 , Z= zeros(trials ,(n+1)), acc =0;
for i=1:1: trials

Xi = [0 binornd(1,p,[1,n])];
Y=[];
Y=cumsum(Xi);
if (Y(31)==5 && Y(41)==7)

acc=acc +1;
end
Z(i,:)=Y;

end

%Results from Simulation ,
ProbSim = acc/trials

Listing 4: MATLAB code to prove probability through simulation

1.3.2 Variance Calculation for the Random Variable Xi ∼ Uniform(0, 2)

Using the result in Equation 3, the Variance can now be defined such that:

V ar(Xi) =

ˆ 2

0
(x− E[X])2 f(x) dx

V ar(Xi) =
1

2

ˆ 2

0

(
x2 − 2x+ 1

)
dx =

1

2

[
1

3
x3 − x2 + x

]2
0

=
1

2

(
8

3
− 4 + 2

)

V ar(Xi) =
1

3
= 0.33̄3

1.3.3 Distribution of the Stochastic Process

The transformation of the random variable shown in Equation 2 can now be written numerically given Xi ∼
Uniform(0, 2).

ỹt(n) = (y(n)− 1)
√

3 (4)

As shown in Figure 2, as n increases there is convergence towards a limiting distribution. From Figure 2, It appears
that this distribution is Gaussian in shape, which is expected due to central limit theorem. The central limit theorem
states that the summation of independent random variables leads to a Gaussian distribution.
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Figure 2: 3D Histogram showing change in distribution as n increases

2 The Multi-Dimensional Normal Distribution

2.1 Probability Density Function for the Bi-variate Normal Distribution

The Probability Density Function (pdf) for the Bi-variate Normal Distribution is as follows:

f(x, y) =
1

2π
√

1− ρ2σ1σ2
e
− 1

2(1−ρ2)

[
x2

σ21
− 2xyρ
σ1σ2

+ y2

σ22

]
(5)

2.2 Calculating the Correlation Coefficient

The expression for the covariance is shown in Equation 6. To determine the covariance of the pdf in Equation 5, The
mean values µx and µy are set to zero and the pdf is substituted for the f(x, y) term.

Cov(x, y) =

ˆ ∞
−∞

ˆ ∞
−∞

(x− µx) (y − µy) f(x, y) dx dy (6)

Cov(x, y) =

ˆ ∞
−∞

ˆ ∞
−∞

xy

2π
√

1− ρ2σxσy
e
− 1

2(1−ρ2)

[
x2

σ2x
− 2xyρ
σxσy

+ y2

σ2y

]
dx dy (7)

To avoid any mistakes in evaluating this integral, this expression was evaluated and simplified using Wolfram’s Math-
ematica Software Package.
To get a clean solution to this integral, some logical assumptions were made about the variables ρ, σx and σy these
are as follows:

0 > ρ > 1
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σx > 0

σy > 0

Given these assumptions, the covariance of the pdf in Equation 5 is defined by the expression in Equation 8.

Cov(x, y) = ρσxσy (8)

Comparing the result in Equation 8 with the relationship for the covariance and correlation coefficient in Equation 9,
it shown that ρ is the correlation coefficient.

Corr(X, Y ) =
Cov(X, Y )

σxσy
(9)

2.3 Proof that the Bivariate Normal Distribution is a special case of the Multivariate Normal
Distribution

The definition of the pdf for a multivariate joint Gaussian distribution is defined by:

fX(x) , fX1, X2,...Xn =
exp{−1

2(x−m)TK−1(x−m)}
(2π)n/2 | K |1/2

Where

x =


x1
x2
...
xn

 , m =


m1

m2
...
mn

 =


E[X1]
E[X2]

...
E[Xn]

 , K =


Var (X1) Cov (X1, X2) . . . Cov (X1, Xn)

Cov (X2, X1) Var (X2) . . . Cov (X2, Xn)
...

...
. . .

...
Cov (Xn, X1) Cov (Xn, X2) . . . Var (Xn)


Substituting X and Y into the covariance matrix for n = 2,

K =

[
Var (X) Cov (X, Y )

Cov (Y, X) Var (Y )

]

K =

[
σ21 ρσ1σ2

ρσ1σ2 σ22

]
The inverse of the covariance matrix is defined as follows

K−1 =
1

σ21σ
2
2(1− ρ2)

[
σ22 −ρσ1σ2

−ρσ1σ2 σ21

]
Substituting this back into the joint Gaussian multivariate pdf, where the term ϕ is the exponent, in the term eϕ,
such that:
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Figure 3: Comparison of the Gaussian and Rayleigh Distributions

ϕ =
1

σ21σ
2
2(1− ρ2)

(x−m1, y −m2)

[
σ22 −ρσ1σ2

−ρσ1σ2 σ21

] [
x−m1

y −m2

]

ϕ =
1

σ21σ
2
2(1− ρ2)

(x−m1, y −m2)

[
σ22(x−m1)− ρσ1σ2(y −m2)
−ρσ1σ2(x−m1) + σ21(y −m2)

]

ϕ =

(
x−m1
σ1

)2
− 2ρ (x−m1)

σ1

(y−m2)
σ2

+
(
y−m2

σ2

)2
(1− ρ2)

(10)

Them1andm2 are the centering points for the X, Y and n = 2 normal distribution, setting the centering pointsm1and
m2to zero standardizes the expression in Equation 10 giving the standard bivariate normal distribution’s exponent from
the pdf.

ϕ =

(
x
σ1

)2
− 2ρxy

σ1σ2
+
(
y
σ2

)2
(1− ρ2)

2.4 Rayleigh Distribution

The Rayleigh method generates independent pairs of normally distributed variables. The MATLAB code in Listing 5,
generates these values and plots a 3D histogram showing the distribution for the random process.
For comparison, the code also generates a surface plot of the Probability Density Function for the Bivariate Normal
Distribution. The plots for the Rayleigh Histogram and Bivariate Normal pdf surface are shown in Figures 3a and 3b
respectively.
As can be from the plots in Figures 3a and 3b, Both of these plots appear to share the Gaussian shape in both
dimensions, centered around the same mean.
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function myrayleigh( sigma , numvals )
nqz = 1.0000e-015; % not quite zero constant

angle = random(’unif’,0,2 * pi, 1, numvals );
radius = sigma * sqrt(-2 * log(random(’unif’,nqz ,1,1, numvals )));

[x y] = pol2cart(angle ,radius );

figure (1), clf(1), hist3 ([x’ y’], [60 60]);
xlabel(’x-bins’), ylabel(’y-bins’), zlabel(’frequency ’);

set(gcf ,’renderer ’,’opengl ’);
set(get(gca ,’child’),’FaceColor ’,’interp ’,’CDataMode ’,’auto’);

pause;

mx=[0 0]’; Cx=[1 0; 0 1]; x= -5:0.1:5;
for i=1: length(x),

for j=1: length(x),
f(i,j)=(1/(2* pi*det(Cx )^1/2))* exp (( -1/2)*

([x(i) x(j)]-mx ’)* inv(Cx)*([x(i);x(j)]-mx));
end

end
figure (1), clf(1), surf(x,x,f);
xlabel(’x’), ylabel(’y’), zlabel(’z’);

end

Listing 5: MATLAB Source Code to generate a histogram of the Rayleigh Distribution and Standard Bivariate Normal
Plane for Comparison.

10


	Simple Stochastic Processes
	Mean, Variance and Covariance Derivation
	Mean Derivation
	Variation Derivation
	Covariance Derivation

	Covariance Simulation of the Binomial Distribution
	Process Simulation for the case of Xi being binomially distributed
	Estimation of the Covariance of two variables in the sequence Yn through Simulation
	Calculation of the Joint Probability of the Expression P(X30=5, X40=7)

	Stochastic Process of a Uniformly Distributed Variable
	Mean Calculation for the Random Variable XiUniform(0,2)
	Variance Calculation for the Random Variable XiUniform(0,2)
	Distribution of the Stochastic Process


	The Multi-Dimensional Normal Distribution
	Probability Density Function for the Bi-variate Normal Distribution
	Calculating the Correlation Coefficient
	Proof that the Bivariate Normal Distribution is a special case of the Multivariate Normal Distribution
	Rayleigh Distribution


