Probability and Statistics for Final Year Engineering Students

By Yoni Nazarathy, Last Updated: May 22, 2011.

Exercises and Tutorial 1:
 Introduction and Basic Terms

Basic "Statistics":

A "statistic" is a quantity calculated from a random sample, $X_{1}, X_{2}, \ldots, X_{n}$. Here are important examples:

- The minimum or maximum, $\operatorname{Min}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ or $\operatorname{Max}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
- The sample mean, $\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$.
- The sample variance, $S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$
- The proportion of values satisfying some property $\mathrm{A}: \hat{p}=\frac{\sum_{i=1}^{n} 1\left\{X_{i} \in A\right\}}{n}$.

1. Assume $\left(X_{1}, X_{2}, \ldots, X_{6}\right)=(-10.3,7.2,4.2,1.2,0,-12)$, calculate the above statistics. For the proportion statistic let $A=\{x: x<0\}$.
2. Assume that the $X_{i}=3 i+7$ for $i=1, \ldots, n$ (this is obviously not a "random sample" - yet assume this for the purpose of the exercise). Calculate the above statistics, for the proportion statistic let A be the set of even integers.
3. Find a formula for the sample mean of $n+1$ observations given X_{n+1} and the sample mean of n observations. When is this useful?
4. Find a formula for the sample variance in terms of the sample mean and $\sum_{i=1}^{n} X_{i}^{2}$ (i.e. the formula should only use these two values and n, but not the individual observations).
5. Assume that the data is binary taking values which are either 0 or 1 . The sample proportion is $\hat{p}=\frac{\sum_{i=1}^{n} I_{i}}{n}$. Write a formula for the sample variance in terms of \hat{p}.
6. What is $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)$?

Probability and random variables:

The cumulative distribution function (CDF) of a random variable X (discrete or continuous) is:

$$
F(x)=P(X \leq x) .
$$

The PDF (density) of a continuous random variable is: $\mathrm{f}(x)=\frac{d}{d x} F(x)$. We have that

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

The PDF (mass - sometimes called PMF) of a discrete random variable is

$$
p(x)=P(X=x)=F(x)-F\left(x^{-}\right) .
$$

The mean (expectation) of a random variable is:

$$
E[X]=\sum_{x} x p(x) \quad E[X]=\int x f(x) d x
$$

And the variance is:

$$
\operatorname{Var}(X)=\sum_{x}(x-E[X])^{2} p(x) \quad \operatorname{Var}(X)=\int(x-E[X])^{2} f(x) d x
$$

If $Y=g(X)$, one way to calculate the mean and variance of Y is to find its distribution (we don't fully do this in this subject). Alternatively: $E[Y]=\sum_{x} g(x) p(x)$ and $\operatorname{Var}(Y)=\sum_{x}(g(x)-E[Y])^{2} p(x)$. (With similar formulas for the continuous case).
7. Write down and draw the CDF and PDF of a uniform random variable taking values in the range [-2,8].
8. Calculate the mean and variance of the above random variable.
9. Show that $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$.
10. A discrete uniform random variable gets values $\{1, \ldots, n\}$, each with probability $1 / n$. Calculate the mean and the variance of this random variable.
11. Consider a continuous random variable with $f(x)=C x^{2}$ for $-1 \leq x \leq 1$.
a. What is the value of C ?
b. What is the mean?
c. What is the variance?
12. A "degenerate" random variable gets the value c with probability 1 . What is the CDF of this random variable? What is the mean? What is the variance?
13. An exponential random variable X has PDF, $f(x)=\frac{1}{\mu} e^{-\frac{1}{\mu} x}$ for $x \geq 0$, where $\mu>0$. Assume $\mu=5.2$ and calculate $P(X>x)$.
14. Show that if X is a random variable, then for the random variable $\mathrm{Y}=\mathrm{a} \mathrm{X}+\mathrm{b}$:

$$
E[Y]=a E[X]+b \quad \operatorname{Var}(Y)=a^{2} \operatorname{Var}(X) .
$$

The distribution of a statistic:

A statistic is a random variables which is a function of the random sample.
Here are basic properties of the mean and variance which we need:

$$
E\left[X_{1}+\cdots+X_{n}\right]=E\left[X_{1}\right]+\cdots E\left[X_{n}\right]
$$

for any sequence of random variables. When the sequence is independent then,

$$
\operatorname{Var}\left(X_{1}+\ldots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right) .
$$

(Note: In section 4 we will learn about covariance which is used to correct the variance of the sum of dependent random variables).
15. Show that $E[\bar{X}]=E[X]$. Does the result require the random variables in the sample to be independent?
16. Show that $\operatorname{Var}(\bar{X})=\frac{\operatorname{Var}(X)}{n}$. Does the result require the random variables in the sample to be independent?
17. Assume X_{1}, \ldots, X_{n} are independent uniform random variables on the range $[10,20]$. What is the mean and variance of the sample mean?
18. Assume I_{1}, \ldots, I_{n} are independent Bernoulli random variables with probability p (each gets 1 with probability p and 0 with probability 1-p), what is the mean and variance of the sample mean (which is also the sample proportion)?
19. Use simulation to obtain the CDF of the maximum of 3 independent uniform $(0,1)$ random variables. Compare with this calculation:

$$
P\left(\operatorname{Max}\left(X_{1}, \ldots, X_{n}\right) \leq x\right)=P\left(X_{1} \leq x, \ldots, X_{n} \leq x\right)=\mathrm{F}(\mathrm{x})^{n}=\left\{\begin{array}{cc}
0 & x<0 \\
x^{n} & 0 \leq x \leq 1 \\
1 & 1<x
\end{array}\right.
$$

20. Try to use similar reasoning to that of the above calculation to obtain the distribution of $\operatorname{Min}\left(X_{1}, \ldots, X_{n}\right)$.
21. What is the mean value (expectation) of $\operatorname{Min}\left(X_{1}, \ldots, X_{n}\right)$ in the case of independent uniform $(0,1)$ random variables?
22. Use the above result to calculate the mean and variance of the sample maximum in the case of uniform (0,1) for arbitrary n .

Selected Solutions

1) Sample mean: - 1.62 sample variance: $61.1, \hat{p}=1 / 3$.
2) Sample mean: $\frac{17 n+3 n^{2}}{2 n}$ Sample variance: $\frac{3\left(n^{3}-n\right)}{4(n-1)}$ (a bit tedious). Sample proportion: if n is even then $1 / 2$ if n is odd then $\frac{n+1}{2 n}$.
3) $\bar{X}_{n+1}=\frac{n}{n+1} \bar{X}_{n}+\frac{1}{n+1} X_{n+1}$. This is useful for an "on-line running average".
4) See Lecture 3:

$$
S^{2}=\frac{\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}}{n-1} .
$$

5) Observe that $n \hat{p}=\sum_{i=1}^{n} I_{i}=\sum_{i=1}^{n} I_{i}{ }^{2}$. So

$$
S^{2}=\frac{n \hat{p}-n \hat{p}^{2}}{n-1}=\frac{n}{n-1} \hat{p}(1-\hat{p}) .
$$

6) 0 .
7) CDF: $F(x)=\left\{\begin{array}{cc}0 & x<-2 \\ \frac{1}{10} x+\frac{1}{5} & -2 \leq x \leq 8 \\ 1 & 8<x\end{array} \quad\right.$ PDF: $f(x)=\left\{\begin{array}{cc}0 & x<-2 \\ \frac{1}{10} & -2 \leq x \leq 8 . \\ 0 & 8<x\end{array}\right.$
8) Mean, $\mathrm{E}[\mathrm{X}]=\int_{-\infty}^{\infty} x f(x) d x=\int_{-2}^{8} x \frac{1}{10} d x=3$

Variance: $\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-3)^{2} f(x) d x=\int_{-2}^{8}\left(x^{2}-6 x+9\right) \frac{1}{10} d x=\frac{25}{3}$
9) This is a very useful result: (denote $E X=\mu$). Below we show the result is for the discrete case, for the continuous case replace the sums by integrals.

$$
\operatorname{Var}(X)=\sum(x-\mu)^{2} p(x)=\sum\left(x^{2}-2 x \mu+\mu^{2}\right) p(x)=\sum x^{2} p(x)-2 \mu^{2}+\mu^{2}
$$

10) Mean: $\frac{1+n}{2}$. Variance: $\frac{n^{2}-1}{12}$
11) a) $\mathrm{C}=3 / 2$. b) 0 c) $\int_{-1}^{1} \frac{3}{2} x^{4} d x=\frac{3}{5}$
12) CDF is the step function at the point c (gets 0 for values less than c and 1 for values greater or equal to c). The mean is c . The variance is 0.
13) $e^{-0.192308 x}$
14) $E[a X+b]=\int(a x+b) f(x) d x=a \int x f(x) d x+b \int f(x) d x=a E[X]+b$

$$
\operatorname{Var}(a X+b)=\int(a X+b-E[a X+b])^{2} f(x) d x=\int(a X+b-a E[X]-b)^{2} f(x) d x=a^{2} \operatorname{Var}(X)
$$

The calculation for discrete random variables follows the exact same lines.
15) $E[\bar{X}]=E\left[\frac{\sum_{i=1}^{n} X_{i}}{n}\right]=\frac{1}{n} E\left[\sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right]=\frac{n E[X]}{n}=E[X]$. This is true whenever the random variables have the same mean yet does not require them to be independent.
16) $\operatorname{Var}(\bar{X})=\operatorname{Var}\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{n \operatorname{Var}(X)}{n^{2}}=\frac{\operatorname{Var}(X)}{n}$

This is true whenever the variance of a sum is the sum of the variances, as is the case when the random variables are independent.
17) $E[\bar{X}]=15, \operatorname{Var}(\bar{X})=\frac{25}{3 n}$.
18) QQQQ
19) $Q Q Q Q$
20) $F(x)=P\left(\operatorname{Min}\left(X_{1}, \ldots, X_{n}\right) \leq x\right)=1-P\left(\operatorname{Min}\left(X_{1}, \ldots, X_{n}\right)>x\right)$
$=1-P\left(X_{1}>x, \ldots, X_{n}>x\right)=1-P\left(X_{1}>x\right) \ldots P\left(X_{n}>x\right)=1-(1-F(x))^{n}$
21) Using the above, $F(x)=1-(1-x)^{n}$ for x in $[0,1]$. So the density is:

$$
f(x)=n(1-x)^{n-1}
$$

So the mean is $\int_{0}^{1} x n(1-x)^{n-1} d x=\frac{1}{1+n}$

